efficientvit-ena24-Original

This model is a fine-tuned version of timm/efficientvit_b0.r224_in1k on the Pamreth/ena24 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0992
  • Accuracy: 0.9786
  • F1: 0.9755
  • Acc American black bear: 0.9850
  • Acc American crow: 0.9853
  • Acc Bird: 0.9667
  • Acc Bobcat: 0.9792
  • Acc Chicken: 0.9744
  • Acc Coyote: 0.98
  • Acc Dog: 0.9905
  • Acc Domestic cat: 1.0
  • Acc Eastern chipmunk: 1.0
  • Acc Eastern cottontail: 0.8889
  • Acc Eastern fox squirrel: 1.0
  • Acc Eastern gray squirrel: 0.9778
  • Acc Grey fox: 0.9524
  • Acc Horse: 0.875
  • Acc Northern raccoon: 0.9535
  • Acc Red fox: 0.9344
  • Acc Striped skunk: 0.9545
  • Acc Vehicle: 1.0
  • Acc Virginia opossum: 1.0
  • Acc White Tailed Deer: 1.0
  • Acc Wild turkey: 1.0
  • Acc Woodchuck: 1.0
  • F1 American black bear: 0.9813
  • F1 American crow: 0.9745
  • F1 Bird: 0.9831
  • F1 Bobcat: 0.9691
  • F1 Chicken: 0.9870
  • F1 Coyote: 0.98
  • F1 Dog: 0.9952
  • F1 Domestic cat: 0.9863
  • F1 Eastern chipmunk: 0.9892
  • F1 Eastern cottontail: 0.9091
  • F1 Eastern fox squirrel: 0.9903
  • F1 Eastern gray squirrel: 0.9670
  • F1 Grey fox: 0.9677
  • F1 Horse: 0.9333
  • F1 Northern raccoon: 0.9535
  • F1 Red fox: 0.9580
  • F1 Striped skunk: 0.9655
  • F1 Vehicle: 1.0
  • F1 Virginia opossum: 1.0
  • F1 White Tailed Deer: 0.9714
  • F1 Wild turkey: 1.0
  • F1 Woodchuck: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 7
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Acc American black bear Acc American crow Acc Bird Acc Bobcat Acc Chicken Acc Coyote Acc Dog Acc Domestic cat Acc Eastern chipmunk Acc Eastern cottontail Acc Eastern fox squirrel Acc Eastern gray squirrel Acc Grey fox Acc Horse Acc Northern raccoon Acc Red fox Acc Striped skunk Acc Vehicle Acc Virginia opossum Acc White Tailed Deer Acc Wild turkey Acc Woodchuck F1 American black bear F1 American crow F1 Bird F1 Bobcat F1 Chicken F1 Coyote F1 Dog F1 Domestic cat F1 Eastern chipmunk F1 Eastern cottontail F1 Eastern fox squirrel F1 Eastern gray squirrel F1 Grey fox F1 Horse F1 Northern raccoon F1 Red fox F1 Striped skunk F1 Vehicle F1 Virginia opossum F1 White Tailed Deer F1 Wild turkey F1 Woodchuck
1.3767 0.1302 100 1.9571 0.4626 0.3682 0.9774 0.5294 0.0 0.0 0.7564 0.72 0.3619 0.4722 0.8043 0.1556 0.4118 0.7111 0.4603 0.0 0.2093 0.0 0.0 0.0 0.7593 0.1765 0.0 0.3667 0.3626 0.4932 0.0 0.0 0.7195 0.6990 0.5205 0.4444 0.8810 0.2154 0.5526 0.8205 0.6304 0.0 0.2951 0.0 0.0 0.0 0.8586 0.2647 0.0 0.3438
0.9485 0.2604 200 1.3869 0.6191 0.5612 0.9323 0.8603 0.7333 0.25 0.4872 0.98 0.5524 0.5417 0.9348 0.2222 0.8039 0.7556 0.6190 0.125 0.3488 0.2131 0.3182 0.55 0.8148 0.4706 0.4186 0.0333 0.6108 0.8269 0.6769 0.3636 0.6387 0.4395 0.6629 0.4756 0.9663 0.3175 0.6613 0.8608 0.5493 0.2222 0.4839 0.3210 0.3944 0.7097 0.8934 0.6316 0.5806 0.0606
0.5111 0.3906 300 1.2253 0.6992 0.7108 0.6391 0.9118 0.7 0.8333 0.8718 0.8 0.8095 0.7778 0.9348 0.3556 0.9804 0.7778 0.5714 0.625 0.8372 0.2787 0.3409 0.95 0.4167 0.6471 0.5814 0.7333 0.7489 0.8185 0.6885 0.2817 0.8193 0.8602 0.8374 0.7619 0.9663 0.5 0.8696 0.8434 0.7273 0.7692 0.6857 0.4359 0.4688 0.7917 0.5844 0.6875 0.6757 0.8148
0.5202 0.5208 400 1.0903 0.6504 0.6495 0.9850 0.3235 0.7667 0.4167 0.7821 0.82 0.6286 0.5 0.9565 0.6667 0.7451 0.7778 0.6190 0.0 0.3256 0.8033 0.3864 0.7 0.5926 0.6863 0.6977 0.7 0.5078 0.4862 0.6765 0.4255 0.8079 0.8542 0.7630 0.6207 0.9670 0.6316 0.8261 0.7609 0.7647 0.0 0.4746 0.6759 0.5075 0.8 0.7442 0.7692 0.5128 0.7119
0.6265 0.6510 500 0.8185 0.7947 0.7629 0.8496 0.9118 0.2 0.7917 0.9615 1.0 0.7429 0.8056 0.9565 0.6444 0.8431 0.8889 0.5079 0.625 0.7442 0.7377 0.5227 0.8 0.9907 0.5686 0.7209 0.7667 0.8933 0.8921 0.2667 0.5170 0.8108 0.8475 0.8387 0.6784 0.9670 0.6304 0.8515 0.7843 0.6667 0.7692 0.8205 0.8108 0.5412 0.8889 0.9907 0.7160 0.7949 0.8070
0.4103 0.7812 600 1.2751 0.6298 0.5905 0.9474 0.7353 0.8 0.375 0.7436 0.9 0.6 0.5278 0.9348 0.2667 0.4314 0.7111 0.5397 0.0 0.6512 0.1639 0.5682 0.3 0.9630 0.2745 0.1860 0.5 0.4764 0.8 0.7059 0.4390 0.7945 0.8654 0.7456 0.6496 0.9663 0.4211 0.6027 0.8101 0.7010 0.0 0.7368 0.2817 0.2538 0.3529 0.9765 0.4308 0.3137 0.6667
0.355 0.9115 700 0.8689 0.7672 0.7439 0.9699 0.9191 0.8333 0.4792 0.7692 0.92 0.6476 0.6389 0.9783 0.7111 0.9608 0.8444 0.4762 0.75 0.8605 0.1475 0.6591 0.9 0.8981 0.8824 0.5814 0.7667 0.8113 0.8117 0.7463 0.5227 0.8571 0.8679 0.7640 0.6970 0.9783 0.6957 0.9608 0.8736 0.6452 0.8571 0.6435 0.2571 0.6988 0.5373 0.9463 0.6767 0.6494 0.8679
0.3807 1.0417 800 0.8685 0.7527 0.7404 0.6992 1.0 0.8333 0.375 0.6667 0.7 0.9238 0.8333 0.8913 0.6667 0.9608 0.7111 0.7937 0.75 0.6744 0.4918 0.3409 0.85 0.9907 0.6667 0.2093 0.7 0.8017 0.64 0.6667 0.4186 0.8 0.8235 0.9108 0.8451 0.9318 0.5405 0.784 0.6957 0.8 0.8571 0.7733 0.6593 0.5085 0.9189 0.9427 0.8 0.3462 0.8235
0.204 1.1719 900 0.6047 0.8366 0.8159 0.9398 0.8088 0.4667 0.8333 0.9231 0.9 0.8952 0.9306 0.9348 0.7111 1.0 0.8889 0.7302 0.875 0.7674 0.7049 0.7273 0.8 0.9537 0.6471 0.5814 0.8333 0.8562 0.8907 0.6087 0.6061 0.8834 0.9184 0.94 0.8272 0.9556 0.7191 0.7786 0.7843 0.8364 0.8235 0.825 0.7414 0.7711 0.8889 0.9763 0.7765 0.7353 0.8065
0.3145 1.3021 1000 0.5570 0.8489 0.8175 0.9774 0.9779 0.4667 0.7292 0.9231 0.98 0.9524 0.7639 1.0 0.5778 1.0 0.9111 0.8254 0.875 0.5581 0.7213 0.7045 0.85 0.9907 0.8824 0.2558 0.7333 0.8497 0.8808 0.5957 0.7692 0.8780 0.9703 0.9615 0.7971 0.9787 0.65 0.8430 0.9425 0.8189 0.875 0.7059 0.8148 0.6966 0.9189 0.9817 0.8036 0.4074 0.8462
0.2662 1.4323 1100 0.4117 0.8901 0.8754 0.9549 0.9485 0.8667 0.7292 0.7692 0.96 0.9048 0.9167 0.9565 0.7333 1.0 0.9111 0.9048 0.875 0.8605 0.8197 0.7727 0.7 0.9907 0.9216 0.6744 0.9667 0.9170 0.9214 0.7536 0.5983 0.8333 0.9697 0.9453 0.9296 0.9670 0.7416 0.9714 0.9425 0.9344 0.9333 0.9024 0.8333 0.8193 0.8235 0.9907 0.9216 0.7436 0.8657
0.391 1.5625 1200 0.4867 0.8664 0.8440 0.9398 0.8382 0.9667 0.4792 0.6795 0.9 0.9143 0.875 1.0 0.7778 0.9020 0.9333 0.8889 0.875 0.9070 0.7705 0.75 0.9 0.9907 0.9608 0.9070 0.7667 0.8741 0.9084 0.5421 0.6389 0.8092 0.9278 0.9552 0.8936 0.8598 0.6604 0.9485 0.9545 0.8296 0.6667 0.8966 0.8545 0.8049 0.8372 0.9953 0.9423 0.9176 0.8519
0.3194 1.6927 1300 0.2562 0.9237 0.9099 0.9624 0.8676 0.9667 0.7292 0.9359 0.94 0.9810 0.9722 1.0 0.7556 1.0 0.9111 0.9365 0.625 0.9767 0.9016 0.75 0.95 0.9907 0.9216 0.9070 0.9667 0.9275 0.9008 0.9206 0.8140 0.9605 0.94 0.9856 0.9272 0.9892 0.68 1.0 0.9318 0.8939 0.7143 0.9655 0.9167 0.8049 0.9744 0.9953 0.9216 0.9176 0.9355
0.0988 1.8229 1400 0.3040 0.9092 0.8956 0.9850 0.8824 0.9667 0.8542 0.9103 0.94 0.9333 0.9028 1.0 0.8222 0.9608 0.9556 0.9524 0.875 0.8605 0.7869 0.75 0.85 1.0 0.9412 0.6512 0.9333 0.9493 0.8955 0.9355 0.7961 0.9281 0.9592 0.9655 0.9028 0.9787 0.74 0.9608 0.9451 0.8333 0.7778 0.8916 0.8807 0.7952 0.9189 0.9863 0.9412 0.7887 0.9333
0.0861 1.9531 1500 0.2570 0.9298 0.9183 0.9624 0.9926 0.9667 0.8125 0.9103 0.94 0.9524 0.875 1.0 0.6444 1.0 0.9111 0.8571 0.875 0.9302 0.8852 0.9545 1.0 0.9907 0.9412 0.9070 0.9333 0.9734 0.9712 0.8788 0.78 0.9281 0.9216 0.9662 0.8811 0.9892 0.7532 0.9808 0.9425 0.9153 0.9333 0.8421 0.8926 0.8936 0.9302 0.9817 0.9320 0.9512 0.9655
0.1595 2.0833 1600 0.2599 0.9359 0.9282 0.9850 0.9926 0.8333 0.9167 0.7949 0.96 0.9905 0.9444 1.0 0.6444 1.0 0.9778 0.9206 0.875 0.9767 0.8361 0.8864 0.95 0.9630 0.9804 0.9302 0.9667 0.9424 0.9677 0.8929 0.9167 0.8671 0.9505 0.9455 0.9067 0.9892 0.7436 0.9714 0.9778 0.9431 0.875 0.8842 0.9107 0.9176 0.95 0.9811 0.9524 0.9524 0.9831
0.102 2.2135 1700 0.2977 0.9214 0.9054 0.9850 0.9044 0.9667 0.7917 0.8846 0.94 0.9810 0.9167 1.0 0.7333 1.0 0.9778 0.8571 0.875 0.9535 0.8197 0.8864 0.95 0.9907 0.9020 0.8140 0.9667 0.9097 0.9425 0.8923 0.8736 0.9324 0.9495 0.9904 0.9103 0.9787 0.7416 0.8793 0.9263 0.9153 0.6667 0.9318 0.8696 0.8764 0.9744 0.9907 0.92 0.8974 0.9508
0.3103 2.3438 1800 0.2418 0.9313 0.9239 0.9699 0.9338 0.9 0.8542 0.9615 0.96 0.9714 0.8056 1.0 0.9111 0.9804 0.9333 0.9206 0.875 0.9302 0.9672 0.8864 1.0 0.9537 0.7451 0.9535 0.9667 0.9556 0.9585 0.9153 0.8817 0.9146 0.9796 0.9623 0.8855 0.9892 0.7387 0.9524 0.9655 0.9431 0.875 0.9302 0.9219 0.8764 0.9524 0.9763 0.8352 0.9647 0.9508
0.0823 2.4740 1900 0.2137 0.9458 0.9382 0.9699 0.9485 0.9667 0.875 0.9359 0.96 0.9905 0.9583 1.0 0.8222 0.9412 0.9556 0.9048 0.875 0.8837 0.9180 0.9318 0.95 0.9907 0.9804 0.8837 0.9667 0.9382 0.9520 0.9355 0.8317 0.9669 0.9796 0.9952 0.9324 0.9892 0.7957 0.9697 0.9663 0.9268 0.875 0.9383 0.9412 0.9111 0.9744 0.9953 0.9524 0.9383 0.9355
0.0975 2.6042 2000 0.1996 0.9450 0.9378 0.9624 0.8824 0.6667 0.8542 0.9615 0.96 0.9905 0.9722 1.0 0.9111 1.0 0.9333 0.9683 0.875 0.9767 0.9508 0.8864 1.0 0.9815 0.9608 0.9767 0.9333 0.9734 0.9231 0.7843 0.9011 0.9317 0.9796 0.9858 0.9589 0.9892 0.7736 0.9623 0.9655 0.9313 0.9333 0.9767 0.9431 0.9070 0.9756 0.9907 0.9245 0.9882 0.9333
0.1853 2.7344 2100 0.2121 0.9489 0.9399 0.9474 0.9485 0.8333 0.875 0.9231 0.96 0.9905 1.0 1.0 0.8222 1.0 0.9778 0.9524 0.75 0.9535 0.8525 0.9318 0.95 0.9907 1.0 0.9767 0.9333 0.9692 0.9314 0.8929 0.8317 0.9412 0.96 0.9952 0.9474 0.9892 0.8315 0.9808 0.9888 0.9449 0.8571 0.9425 0.9204 0.9011 0.95 0.9953 0.9533 0.9882 0.9655
0.0936 2.8646 2200 0.1857 0.9527 0.9481 0.9774 0.9265 0.9667 0.7292 0.9744 0.98 0.9619 0.9861 1.0 0.9333 0.9020 0.9556 0.9365 0.875 0.9070 0.9508 0.9545 1.0 0.9907 1.0 0.9535 1.0 0.9524 0.9509 0.9667 0.8140 0.9806 0.98 0.9806 0.9726 0.9892 0.8571 0.9388 0.9773 0.9672 0.9333 0.9286 0.928 0.8485 1.0 0.9953 0.9808 0.9647 0.9524
0.2936 2.9948 2300 0.1717 0.9588 0.9569 0.8947 0.9926 0.9333 1.0 0.9615 0.96 0.9714 0.9861 1.0 0.8 1.0 0.9778 0.9524 0.875 0.9535 0.8852 0.9091 1.0 1.0 1.0 1.0 0.9667 0.9407 0.9541 0.9655 0.9412 0.9677 0.9796 0.9855 0.9726 0.9892 0.8675 1.0 0.9670 0.9023 0.9333 0.9318 0.9391 0.9302 1.0 1.0 0.9623 0.9556 0.9667
0.0065 3.125 2400 0.1338 0.9733 0.9711 0.9699 0.9779 0.9667 1.0 0.9615 0.96 0.9905 1.0 1.0 0.8667 1.0 0.9778 0.9365 0.875 0.9767 0.9344 0.9091 1.0 1.0 1.0 1.0 1.0 0.9736 0.9708 0.9831 0.9505 0.9804 0.9796 0.9905 0.9796 0.9892 0.8864 1.0 0.9888 0.9291 0.9333 0.9655 0.9580 0.9524 1.0 1.0 0.9533 1.0 1.0
0.0467 3.2552 2500 0.1448 0.9672 0.9640 0.9699 0.9338 0.9667 0.9167 0.9487 0.96 0.9905 0.9583 1.0 0.9556 1.0 0.9556 0.9365 0.875 0.9767 0.9508 0.9773 1.0 1.0 0.9804 1.0 1.0 0.9810 0.9585 0.9667 0.9263 0.9737 0.9796 0.9952 0.9650 0.9892 0.86 0.9714 0.9773 0.9593 0.9333 0.9655 0.9431 0.9348 1.0 1.0 0.9434 1.0 0.9836
0.0757 3.3854 2600 0.1638 0.9626 0.9592 0.9624 1.0 0.9667 0.9375 0.9615 0.96 0.9905 0.9583 1.0 0.8 1.0 0.9556 0.9841 0.875 0.8837 0.8852 0.9091 1.0 1.0 0.9804 0.9767 1.0 0.9697 0.9577 0.9831 0.9184 0.9740 0.9796 0.9905 0.9583 0.9892 0.8571 0.9903 0.9663 0.9118 0.9333 0.9383 0.9310 0.9524 1.0 1.0 0.9615 0.9882 0.9524
0.0302 3.5156 2700 0.1556 0.9702 0.9657 0.9925 0.9926 0.9667 1.0 0.9744 0.98 0.9905 0.9861 1.0 0.8 1.0 0.9778 0.9841 0.875 0.9535 0.8852 0.8636 1.0 1.0 0.9412 0.9767 1.0 0.9851 0.9677 0.9667 0.9231 0.9806 0.9899 0.9952 0.9595 0.9892 0.8675 1.0 0.9462 0.9612 0.9333 0.9762 0.9391 0.9268 1.0 1.0 0.9505 0.9882 1.0
0.2921 3.6458 2800 0.1312 0.9656 0.9635 0.9624 0.9412 0.9667 0.9583 0.9744 0.96 0.9905 0.9861 1.0 0.9111 1.0 0.9778 0.9524 0.875 0.9302 0.9016 0.8864 1.0 1.0 1.0 1.0 1.0 0.9734 0.9481 0.9831 0.8846 0.9870 0.9796 0.9952 0.9660 0.9892 0.8454 1.0 0.9888 0.9677 0.9333 0.9412 0.9244 0.9286 1.0 1.0 0.9623 1.0 1.0
0.0554 3.7760 2900 0.1303 0.9740 0.9701 0.9850 0.9853 0.9667 0.9375 0.9615 0.98 0.9905 1.0 1.0 0.8222 1.0 0.9778 0.9683 0.875 0.9302 0.9344 0.9545 1.0 1.0 1.0 1.0 1.0 0.9887 0.9675 0.9831 0.9375 0.9804 0.98 0.9952 0.9730 0.9892 0.8706 0.9714 0.9888 0.9606 0.9333 0.9639 0.9580 0.9545 1.0 1.0 0.9623 1.0 0.9836
0.0171 3.9062 3000 0.1468 0.9733 0.9703 0.9850 1.0 0.9667 0.9792 0.9615 0.96 0.9905 1.0 1.0 0.8 1.0 0.9778 0.9524 0.875 0.9302 0.8852 1.0 1.0 1.0 0.9804 1.0 1.0 0.9813 0.9749 0.9831 0.9895 0.9804 0.9796 0.9858 0.9730 0.9892 0.8780 0.9808 0.9778 0.9449 0.9333 0.9412 0.9231 0.9778 1.0 1.0 0.9524 1.0 1.0
0.0813 4.0365 3100 0.1277 0.9748 0.9721 0.9850 0.9632 0.9667 0.9583 0.9744 0.98 0.9810 1.0 1.0 0.9111 1.0 0.9778 0.9524 0.875 0.9302 0.9344 0.9773 1.0 1.0 0.9804 1.0 1.0 0.9813 0.9740 0.9831 0.9684 0.9806 0.98 0.9856 0.9730 0.9892 0.8913 0.9714 0.9778 0.9677 0.9333 0.9524 0.95 0.9663 1.0 1.0 0.9615 1.0 1.0
0.0048 4.1667 3200 0.1341 0.9733 0.9710 0.9850 0.9265 0.9667 0.9792 0.9744 0.98 0.9810 1.0 1.0 0.9333 1.0 0.9778 0.9524 0.875 0.9302 0.9344 1.0 1.0 1.0 0.9804 1.0 1.0 0.9813 0.9582 0.9831 0.9895 0.9806 0.9899 0.9856 0.9730 0.9892 0.8571 1.0 0.9778 0.9677 0.9333 0.9302 0.95 0.9778 0.9756 1.0 0.9615 1.0 1.0
0.0939 4.2969 3300 0.1393 0.9733 0.9705 0.9850 0.9338 0.9667 0.9792 0.9615 0.98 0.9810 1.0 1.0 0.9333 1.0 0.9778 0.9524 0.875 0.9535 0.9344 0.9545 1.0 1.0 1.0 1.0 1.0 0.9813 0.9585 0.9831 0.9592 0.9740 0.9899 0.9904 0.9796 0.9892 0.8660 1.0 0.9778 0.9756 0.9333 0.9425 0.9580 0.9545 0.9756 1.0 0.9623 1.0 1.0
0.0281 4.4271 3400 0.1279 0.9748 0.9712 0.9925 0.9853 0.9667 0.9583 0.9615 0.98 0.9905 1.0 1.0 0.8222 1.0 0.9778 0.9683 0.875 0.9302 0.9672 0.9545 1.0 0.9907 0.9608 1.0 1.0 0.9814 0.9710 0.9831 0.9485 0.9804 0.98 0.9952 0.9796 0.9892 0.8706 1.0 0.9888 0.976 0.9333 0.9639 0.9365 0.9655 0.9756 0.9953 0.9515 1.0 1.0
0.0157 4.5573 3500 0.1141 0.9748 0.9715 0.9850 0.9853 0.9667 0.9583 0.9744 0.96 0.9905 1.0 1.0 0.8222 1.0 0.9778 0.9683 0.875 0.9302 0.9508 0.9773 1.0 1.0 0.9608 1.0 1.0 0.9850 0.9675 0.9831 0.9583 0.9870 0.9697 0.9952 0.9796 0.9892 0.8706 0.9623 0.9888 0.9606 0.9333 0.9639 0.9508 0.9773 1.0 1.0 0.9515 1.0 1.0
0.0007 4.6875 3600 0.1217 0.9794 0.9761 0.9925 0.9926 0.9667 0.9792 1.0 0.98 0.9905 0.9861 1.0 0.8444 1.0 0.9778 0.9365 0.875 0.9535 0.9672 0.9773 1.0 1.0 0.9608 1.0 1.0 0.9814 0.9747 0.9831 0.9691 0.9873 0.98 0.9952 0.9861 0.9892 0.8837 0.9903 0.9778 0.9672 0.9333 0.9535 0.9752 0.9773 1.0 1.0 0.9703 1.0 1.0
0.0003 4.8177 3700 0.1051 0.9756 0.9723 0.9850 0.9632 0.9667 0.9583 0.9615 0.98 0.9905 1.0 1.0 0.9333 1.0 0.9778 0.9524 0.875 0.9535 0.9344 0.9318 1.0 1.0 1.0 1.0 1.0 0.9813 0.9704 0.9831 0.9583 0.9804 0.98 0.9952 0.9863 0.9892 0.9032 0.9903 0.9670 0.9756 0.9333 0.9425 0.95 0.9425 1.0 1.0 0.9623 1.0 1.0
0.0675 4.9479 3800 0.0992 0.9786 0.9755 0.9850 0.9853 0.9667 0.9792 0.9744 0.98 0.9905 1.0 1.0 0.8889 1.0 0.9778 0.9524 0.875 0.9535 0.9344 0.9545 1.0 1.0 1.0 1.0 1.0 0.9813 0.9745 0.9831 0.9691 0.9870 0.98 0.9952 0.9863 0.9892 0.9091 0.9903 0.9670 0.9677 0.9333 0.9535 0.9580 0.9655 1.0 1.0 0.9714 1.0 1.0
0.0207 5.0781 3900 0.1001 0.9794 0.9762 0.9925 0.9706 0.9667 0.9792 0.9744 0.98 1.0 0.9722 1.0 0.9556 1.0 0.9778 0.9524 0.875 0.9535 0.9344 0.9545 1.0 1.0 1.0 1.0 1.0 0.9888 0.9778 0.9831 0.9592 0.9870 0.98 0.9906 0.9790 0.9892 0.9247 0.9903 0.9778 0.9677 0.9333 0.9535 0.9661 0.9655 1.0 1.0 0.9623 1.0 1.0
0.0024 5.2083 4000 0.1021 0.9763 0.9745 0.9850 0.9338 0.9667 1.0 0.9872 0.98 1.0 0.9583 1.0 1.0 1.0 0.9778 0.9524 0.875 0.9535 0.9344 0.9545 1.0 1.0 0.9804 1.0 1.0 0.9813 0.9621 0.9831 0.9796 0.9935 0.9899 0.9906 0.9718 0.9892 0.8911 0.9903 0.9778 0.9677 0.9333 0.9535 0.9580 0.9655 1.0 1.0 0.9615 1.0 1.0
0.0001 5.3385 4100 0.1299 0.9740 0.9723 0.9774 0.9338 0.9667 1.0 0.9615 0.98 1.0 0.9722 1.0 0.9778 1.0 0.9778 0.9524 0.875 0.9535 0.9016 0.9773 1.0 1.0 1.0 1.0 1.0 0.9811 0.9621 0.9831 0.9796 0.9804 0.9899 0.9906 0.9722 0.9892 0.8889 0.9903 0.9670 0.9524 0.9333 0.9425 0.9483 0.9773 1.0 1.0 0.9623 1.0 1.0
0.071 5.4688 4200 0.1155 0.9786 0.9759 0.9850 0.9926 0.9667 0.9792 0.9744 0.96 0.9905 1.0 1.0 0.8667 1.0 0.9778 0.9841 0.875 0.9535 0.9180 0.9545 1.0 1.0 1.0 1.0 1.0 0.9813 0.9712 0.9831 0.9691 0.9870 0.9697 0.9952 0.9863 0.9892 0.9070 0.9903 0.9670 0.9688 0.9333 0.9762 0.9573 0.9655 1.0 1.0 0.9714 1.0 1.0
0.0005 5.5990 4300 0.1067 0.9763 0.9736 0.9850 0.9485 0.9667 0.9583 0.9744 0.96 0.9905 1.0 1.0 0.9778 1.0 0.9778 0.9683 0.875 0.9535 0.9180 0.9545 1.0 1.0 1.0 1.0 1.0 0.9850 0.9663 0.9831 0.9485 0.9870 0.9697 0.9952 0.9863 0.9892 0.9072 0.9808 0.9670 0.9606 0.9333 0.9647 0.9573 0.9655 1.0 1.0 0.9714 1.0 1.0
0.0656 5.7292 4400 0.1128 0.9802 0.9774 0.9850 0.9853 0.9667 0.9792 0.9744 0.96 0.9905 1.0 1.0 0.8889 1.0 0.9778 0.9841 0.875 0.9535 0.9344 0.9773 1.0 1.0 1.0 1.0 1.0 0.9850 0.9745 0.9831 0.9691 0.9870 0.9697 0.9952 0.9863 0.9892 0.9091 0.9903 0.9778 0.9612 0.9333 0.9762 0.9661 0.9773 1.0 1.0 0.9714 1.0 1.0
0.0503 5.8594 4500 0.1144 0.9779 0.9751 0.9850 0.9926 0.9667 0.9792 0.9744 0.96 1.0 0.9722 1.0 0.8444 1.0 0.9778 0.9841 0.875 0.9535 0.9180 0.9773 1.0 1.0 1.0 1.0 1.0 0.9850 0.9712 0.9831 0.9592 0.9870 0.9697 0.9906 0.9722 0.9892 0.8941 0.9903 0.9778 0.9764 0.9333 0.9762 0.9573 0.9773 1.0 1.0 0.9623 1.0 1.0
0.0072 5.9896 4600 0.1050 0.9763 0.9736 0.9850 0.9853 0.9667 0.9792 0.9872 0.96 1.0 0.9722 1.0 0.8667 1.0 0.9778 0.9683 0.875 0.9535 0.9180 0.9773 1.0 1.0 0.9608 1.0 1.0 0.9850 0.9710 0.9831 0.9691 0.9809 0.9697 0.9906 0.9722 0.9892 0.8966 0.9903 0.9670 0.9606 0.9333 0.9647 0.9573 0.9773 1.0 1.0 0.9608 1.0 1.0
0.0001 6.1198 4700 0.1132 0.9786 0.9763 0.9850 0.9485 0.9667 0.9792 0.9744 0.96 0.9905 1.0 1.0 0.9778 1.0 0.9778 0.9841 0.875 0.9535 0.9344 0.9545 1.0 1.0 1.0 1.0 1.0 0.9813 0.9663 0.9831 0.9592 0.9870 0.9697 0.9952 0.9863 0.9892 0.9072 0.9903 0.9670 0.9841 0.9333 0.9762 0.9661 0.9655 1.0 1.0 0.9714 1.0 1.0
0.0001 6.25 4800 0.1129 0.9779 0.9752 0.9850 0.9632 0.9667 0.9792 0.9744 0.96 0.9905 1.0 1.0 0.9111 1.0 0.9778 0.9841 0.875 0.9535 0.9344 0.9545 1.0 1.0 1.0 1.0 1.0 0.9850 0.9632 0.9831 0.94 0.9870 0.9697 0.9952 0.9863 0.9892 0.8913 1.0 0.9670 0.9841 0.9333 0.9762 0.9661 0.9655 1.0 1.0 0.9714 1.0 1.0
0.0001 6.3802 4900 0.1115 0.9794 0.9769 0.9850 0.9632 0.9667 0.9792 0.9744 0.98 0.9905 1.0 1.0 0.9556 1.0 0.9778 0.9683 0.875 0.9535 0.9344 0.9545 1.0 1.0 1.0 1.0 1.0 0.9813 0.9704 0.9831 0.9691 0.9870 0.98 0.9952 0.9863 0.9892 0.9149 0.9903 0.9670 0.976 0.9333 0.9647 0.9661 0.9655 1.0 1.0 0.9714 1.0 1.0
0.0135 6.5104 5000 0.1094 0.9779 0.9754 0.9850 0.9779 0.9667 0.9792 0.9744 0.96 0.9905 1.0 1.0 0.8667 1.0 0.9778 0.9683 0.875 0.9535 0.9344 0.9773 1.0 1.0 1.0 1.0 1.0 0.9813 0.9638 0.9831 0.9691 0.9870 0.9697 0.9952 0.9863 0.9892 0.8864 1.0 0.9670 0.9683 0.9333 0.9647 0.9661 0.9773 1.0 1.0 0.9714 1.0 1.0
0.0001 6.6406 5100 0.1110 0.9794 0.9770 0.9850 0.9779 0.9667 0.9792 0.9744 0.98 0.9905 1.0 1.0 0.8889 1.0 0.9778 0.9683 0.875 0.9535 0.9344 0.9773 1.0 1.0 1.0 1.0 1.0 0.9813 0.9673 0.9831 0.9792 0.9870 0.98 0.9952 0.9863 0.9892 0.8989 0.9903 0.9670 0.976 0.9333 0.9647 0.9661 0.9773 1.0 1.0 0.9714 1.0 1.0
0.0003 6.7708 5200 0.1118 0.9786 0.9760 0.9850 0.9779 0.9667 0.9792 0.9744 0.98 0.9905 1.0 1.0 0.8889 1.0 0.9778 0.9683 0.875 0.9535 0.9344 0.9545 1.0 1.0 1.0 1.0 1.0 0.9813 0.9673 0.9831 0.9691 0.9870 0.98 0.9952 0.9863 0.9892 0.8989 0.9903 0.9670 0.976 0.9333 0.9647 0.9661 0.9655 1.0 1.0 0.9714 1.0 1.0
0.0104 6.9010 5300 0.1088 0.9809 0.9785 0.9850 0.9779 0.9667 0.9792 0.9744 0.98 0.9905 1.0 1.0 0.9111 1.0 0.9778 0.9841 0.875 0.9535 0.9508 0.9545 1.0 1.0 1.0 1.0 1.0 0.9813 0.9708 0.9831 0.9691 0.9870 0.98 0.9952 0.9863 0.9892 0.9111 0.9903 0.9778 0.9841 0.9333 0.9762 0.9748 0.9655 1.0 1.0 0.9714 1.0 1.0

Framework versions

  • Transformers 4.52.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
60
Safetensors
Model size
2.16M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for emiliaviq/efficientvit-ena24-Original

Finetuned
(2)
this model