File size: 4,988 Bytes
032c0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from typing import List
import requests
import pandas as pd
import time

from datasets import load_dataset
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry

# if getting bad gateway errors, try:
# Retry session setup
session = requests.Session()
retries = Retry(
    total=5,  # Retry up to 5 times
    backoff_factor=1,  # Wait 1s, then 2s, then 4s...
    status_forcelist=[502, 503, 504],
    allowed_methods=["GET"],
)
session.mount("https://", HTTPAdapter(max_retries=retries))


def get_faers_adverse_events(drug_name: str, limit: int = 100) -> List:
    """
    Fetch and parse adverse event reports for a drug from openFDA FAERS.
    Adds serious outcome flags and event context fields.
    Args:
        drug_name (str): The name of the drug to search for.
        limit (int): The maximum number of records to fetch.
    Returns:
        List: A list of dictionaries containing adverse event data.
    """
    print(f"Fetching FAERS data for: {drug_name}")
    url = "https://api.fda.gov/drug/event.json"
    params = {"search": f'patient.drug.medicinalproduct:"{drug_name}"', "limit": limit}

    try:
        response = requests.get(url, params=params, timeout=10)
        response.raise_for_status()
        results = response.json().get("results", [])

        # Extract detailed adverse event fields
        events = []
        for entry in results:
            patient = entry.get("patient", {})
            reactions = [r.get("reactionmeddrapt") for r in patient.get("reaction", [])]

            event = {
                "drug_name": drug_name,
                "safetyreportid": entry.get("safetyreportid"),
                "serious": entry.get("serious"),
                "seriousnessdeath": entry.get("seriousnessdeath"),
                "seriousnesshospitalization": entry.get("seriousnesshospitalization"),
                "seriousnessdisabling": entry.get("seriousnessdisabling"),
                "seriousnesslifethreatening": entry.get("seriousnesslifethreatening"),
                "seriousnesscongenitalanomali": entry.get("seriousnesscongenitalanomali"),
                "reactions": reactions,
                "receivedate": entry.get("receivedate"),
                "occurcountry": entry.get("occurcountry"),
            }
            events.append(event)
        print(f"Fetched {len(events)} events for {drug_name}")

        return events

    except requests.exceptions.RequestException as e:
        print(f"Failed to fetch data for {drug_name}: {e}")
        return []


def pull_faers_data(drug_list: List[str], output_filename_prefix: str) -> pd.DataFrame:
    """
    Pull FAERS data for a list of drugs and save to CSV.
    Args:
        drug_list (List[str]): List of drug names to fetch data for.
    """
    all_events = []
    for drug in drug_list:
        events = get_faers_adverse_events(drug, limit=100)
        all_events.extend(events)
        time.sleep(1)  # be polite to openFDA rate limits

    # Convert to DataFrame and show or save
    df = pd.DataFrame(all_events)
    df.to_csv(f"{output_filename_prefix}_faers_adverse_events.csv", index=False)
    print(df.head(), df.shape)
    return df


# example drug list
drug_list = ["pembrolizumab", "nivolumab", "ipilimumab"]

# test out fx
pull_faers_data(drug_list=drug_list, output_filename_prefix="test")


# load tahoe drug data metadata, gather the AEs for each unique drug
ds = load_dataset("tahoebio/Tahoe-100M", "drug_metadata")
drug_metadata = ds["train"].to_pandas()

# get adverse events for each unique drug in the tahoe dataset
tahoe_drug_list = drug_metadata["drug"].unique().tolist()
adverse_events = pull_faers_data(drug_list=tahoe_drug_list, output_filename_prefix="tahoe_drugs")
# adverse_events = pd.read_csv("tahoe_drugs_faers_adverse_events.csv")

# summarize the adverse events for each drug so we can try to predict the severity of a drug
def compute_severity_score(df: pd.DataFrame) -> float:
    weights = {
        "seriousnessdeath": 5,
        "seriousnesslifethreatening": 4,
        "seriousnesshospitalization": 3,
        "seriousnessdisabling": 2,
        "seriousnesscongenitalanomali": 1,
    }
    score = 0
    for k, w in weights.items():
        score += df[k].fillna("0").astype(int).sum() * w
    return score


def compute_seriousness_ratio(df: pd.DataFrame) -> float:
    """
    Compute the ratio of serious to non-serious adverse events.
    """
    seriousness_ae_ratio = (
        df.groupby("drug_name")["serious"]
        .apply(lambda x: x.fillna("0").astype(int).mean())
        .reset_index(name="mean_serious_flag")
    )
    return seriousness_ae_ratio


ae_score_df = adverse_events.groupby("drug_name").apply(compute_severity_score).reset_index(name="ae_severity_score")
seriousness_ratio = compute_seriousness_ratio(adverse_events)

# write out outputs
ae_score_df.to_csv("tahoe_drug_ae_severity_score.csv", index=False)
seriousness_ratio.to_csv("tahoe_drug_ae_seriousness_ratio.csv", index=False)