nllb-wol-fr
This model is a fine-tuned version of nllb-200-1.3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1455
- Bleu: 26.4785
- Ter: 66.6786
- Meteor: 0.4869
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 7
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Ter | Meteor |
---|---|---|---|---|---|---|
0.1089 | 1.0 | 5750 | 0.1009 | 21.0097 | 80.5941 | 0.4550 |
0.0719 | 2.0 | 11500 | 0.1005 | 22.6329 | 75.9288 | 0.4713 |
0.041 | 3.0 | 17250 | 0.1092 | 25.7456 | 68.2373 | 0.4748 |
0.0221 | 4.0 | 23000 | 0.1222 | 25.5689 | 68.6435 | 0.4757 |
0.0125 | 5.0 | 28750 | 0.1330 | 26.1980 | 66.2813 | 0.4780 |
0.0061 | 6.0 | 34500 | 0.1417 | 27.1850 | 64.7119 | 0.4835 |
0.0057 | 7.0 | 40250 | 0.1455 | 26.4785 | 66.6786 | 0.4869 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support