roberta-sst2-fine-tuning-shuttleworth-t2

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3491
  • Accuracy: 0.9335

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6887 0.0594 250 0.6925 0.5092
0.3907 0.1188 500 0.2747 0.9048
0.2923 0.1781 750 0.2581 0.8968
0.29 0.2375 1000 0.2650 0.9140
0.2636 0.2969 1250 0.2180 0.9255
0.2501 0.3563 1500 0.2401 0.9278
0.2485 0.4157 1750 0.2941 0.9060
0.2465 0.4751 2000 0.2908 0.9117
0.2255 0.5344 2250 0.3400 0.9094
0.2563 0.5938 2500 0.2383 0.9255
0.239 0.6532 2750 0.2242 0.9300
0.2412 0.7126 3000 0.2647 0.9243
0.2303 0.7720 3250 0.2391 0.9323
0.2479 0.8314 3500 0.2478 0.9312
0.2365 0.8907 3750 0.2826 0.9278
0.2034 0.9501 4000 0.2374 0.9346
0.1981 1.0095 4250 0.2414 0.9289
0.2038 1.0689 4500 0.2832 0.9358
0.1478 1.1283 4750 0.2674 0.9335
0.2093 1.1876 5000 0.2612 0.9392
0.1984 1.2470 5250 0.2418 0.9427
0.1836 1.3064 5500 0.2635 0.9381
0.1827 1.3658 5750 0.2924 0.9243
0.1835 1.4252 6000 0.2754 0.9289
0.1911 1.4846 6250 0.2762 0.9346
0.1874 1.5439 6500 0.2190 0.9381
0.1918 1.6033 6750 0.2548 0.9415
0.1805 1.6627 7000 0.2336 0.9358
0.1798 1.7221 7250 0.2671 0.9415
0.1875 1.7815 7500 0.2633 0.9312
0.1957 1.8409 7750 0.2512 0.9404
0.1629 1.9002 8000 0.2643 0.9415
0.1618 1.9596 8250 0.2867 0.9312
0.1463 2.0190 8500 0.3041 0.9369
0.1295 2.0784 8750 0.3021 0.9381
0.1544 2.1378 9000 0.3249 0.9335
0.1704 2.1971 9250 0.3550 0.9346
0.1277 2.2565 9500 0.3159 0.9404
0.157 2.3159 9750 0.3019 0.9381
0.1675 2.3753 10000 0.2930 0.9392
0.1447 2.4347 10250 0.2990 0.9346
0.1658 2.4941 10500 0.2928 0.9346
0.1676 2.5534 10750 0.3317 0.9369
0.1439 2.6128 11000 0.2950 0.9358
0.1827 2.6722 11250 0.2892 0.9369
0.1333 2.7316 11500 0.3014 0.9300
0.1283 2.7910 11750 0.3216 0.9404
0.1349 2.8504 12000 0.3030 0.9369
0.1548 2.9097 12250 0.3232 0.9358
0.1566 2.9691 12500 0.2929 0.9381
0.115 3.0285 12750 0.3122 0.9392
0.1137 3.0879 13000 0.3419 0.9369
0.1471 3.1473 13250 0.3507 0.9392
0.1325 3.2067 13500 0.3332 0.9369
0.1313 3.2660 13750 0.3053 0.9415
0.1471 3.3254 14000 0.2984 0.9346
0.1071 3.3848 14250 0.3294 0.9335
0.1273 3.4442 14500 0.2874 0.9392
0.1203 3.5036 14750 0.3479 0.9392
0.1233 3.5629 15000 0.3529 0.9300
0.0993 3.6223 15250 0.3450 0.9346
0.1525 3.6817 15500 0.3439 0.9335
0.119 3.7411 15750 0.3740 0.9289
0.1081 3.8005 16000 0.3389 0.9381
0.1138 3.8599 16250 0.3383 0.9358
0.123 3.9192 16500 0.3234 0.9369
0.1197 3.9786 16750 0.3422 0.9346
0.1351 4.0380 17000 0.3424 0.9312
0.1006 4.0974 17250 0.3290 0.9392
0.0989 4.1568 17500 0.3456 0.9346
0.1003 4.2162 17750 0.3636 0.9346
0.0911 4.2755 18000 0.3685 0.9346
0.0959 4.3349 18250 0.3547 0.9358
0.1057 4.3943 18500 0.3543 0.9323
0.1135 4.4537 18750 0.3506 0.9346
0.1083 4.5131 19000 0.3361 0.9369
0.0909 4.5724 19250 0.3597 0.9369
0.0966 4.6318 19500 0.3673 0.9369
0.0749 4.6912 19750 0.3665 0.9346
0.0987 4.7506 20000 0.3592 0.9335
0.111 4.8100 20250 0.3531 0.9335
0.0946 4.8694 20500 0.3502 0.9346
0.1023 4.9287 20750 0.3486 0.9346
0.0889 4.9881 21000 0.3491 0.9335

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.7.0+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
10
Safetensors
Model size
125M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ekiprop/roberta-sst2-fine-tuning-shuttleworth-t2

Finetuned
(1839)
this model