roberta-sst2-fine-tuning-shuttleworth-t2
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3491
- Accuracy: 0.9335
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6887 | 0.0594 | 250 | 0.6925 | 0.5092 |
0.3907 | 0.1188 | 500 | 0.2747 | 0.9048 |
0.2923 | 0.1781 | 750 | 0.2581 | 0.8968 |
0.29 | 0.2375 | 1000 | 0.2650 | 0.9140 |
0.2636 | 0.2969 | 1250 | 0.2180 | 0.9255 |
0.2501 | 0.3563 | 1500 | 0.2401 | 0.9278 |
0.2485 | 0.4157 | 1750 | 0.2941 | 0.9060 |
0.2465 | 0.4751 | 2000 | 0.2908 | 0.9117 |
0.2255 | 0.5344 | 2250 | 0.3400 | 0.9094 |
0.2563 | 0.5938 | 2500 | 0.2383 | 0.9255 |
0.239 | 0.6532 | 2750 | 0.2242 | 0.9300 |
0.2412 | 0.7126 | 3000 | 0.2647 | 0.9243 |
0.2303 | 0.7720 | 3250 | 0.2391 | 0.9323 |
0.2479 | 0.8314 | 3500 | 0.2478 | 0.9312 |
0.2365 | 0.8907 | 3750 | 0.2826 | 0.9278 |
0.2034 | 0.9501 | 4000 | 0.2374 | 0.9346 |
0.1981 | 1.0095 | 4250 | 0.2414 | 0.9289 |
0.2038 | 1.0689 | 4500 | 0.2832 | 0.9358 |
0.1478 | 1.1283 | 4750 | 0.2674 | 0.9335 |
0.2093 | 1.1876 | 5000 | 0.2612 | 0.9392 |
0.1984 | 1.2470 | 5250 | 0.2418 | 0.9427 |
0.1836 | 1.3064 | 5500 | 0.2635 | 0.9381 |
0.1827 | 1.3658 | 5750 | 0.2924 | 0.9243 |
0.1835 | 1.4252 | 6000 | 0.2754 | 0.9289 |
0.1911 | 1.4846 | 6250 | 0.2762 | 0.9346 |
0.1874 | 1.5439 | 6500 | 0.2190 | 0.9381 |
0.1918 | 1.6033 | 6750 | 0.2548 | 0.9415 |
0.1805 | 1.6627 | 7000 | 0.2336 | 0.9358 |
0.1798 | 1.7221 | 7250 | 0.2671 | 0.9415 |
0.1875 | 1.7815 | 7500 | 0.2633 | 0.9312 |
0.1957 | 1.8409 | 7750 | 0.2512 | 0.9404 |
0.1629 | 1.9002 | 8000 | 0.2643 | 0.9415 |
0.1618 | 1.9596 | 8250 | 0.2867 | 0.9312 |
0.1463 | 2.0190 | 8500 | 0.3041 | 0.9369 |
0.1295 | 2.0784 | 8750 | 0.3021 | 0.9381 |
0.1544 | 2.1378 | 9000 | 0.3249 | 0.9335 |
0.1704 | 2.1971 | 9250 | 0.3550 | 0.9346 |
0.1277 | 2.2565 | 9500 | 0.3159 | 0.9404 |
0.157 | 2.3159 | 9750 | 0.3019 | 0.9381 |
0.1675 | 2.3753 | 10000 | 0.2930 | 0.9392 |
0.1447 | 2.4347 | 10250 | 0.2990 | 0.9346 |
0.1658 | 2.4941 | 10500 | 0.2928 | 0.9346 |
0.1676 | 2.5534 | 10750 | 0.3317 | 0.9369 |
0.1439 | 2.6128 | 11000 | 0.2950 | 0.9358 |
0.1827 | 2.6722 | 11250 | 0.2892 | 0.9369 |
0.1333 | 2.7316 | 11500 | 0.3014 | 0.9300 |
0.1283 | 2.7910 | 11750 | 0.3216 | 0.9404 |
0.1349 | 2.8504 | 12000 | 0.3030 | 0.9369 |
0.1548 | 2.9097 | 12250 | 0.3232 | 0.9358 |
0.1566 | 2.9691 | 12500 | 0.2929 | 0.9381 |
0.115 | 3.0285 | 12750 | 0.3122 | 0.9392 |
0.1137 | 3.0879 | 13000 | 0.3419 | 0.9369 |
0.1471 | 3.1473 | 13250 | 0.3507 | 0.9392 |
0.1325 | 3.2067 | 13500 | 0.3332 | 0.9369 |
0.1313 | 3.2660 | 13750 | 0.3053 | 0.9415 |
0.1471 | 3.3254 | 14000 | 0.2984 | 0.9346 |
0.1071 | 3.3848 | 14250 | 0.3294 | 0.9335 |
0.1273 | 3.4442 | 14500 | 0.2874 | 0.9392 |
0.1203 | 3.5036 | 14750 | 0.3479 | 0.9392 |
0.1233 | 3.5629 | 15000 | 0.3529 | 0.9300 |
0.0993 | 3.6223 | 15250 | 0.3450 | 0.9346 |
0.1525 | 3.6817 | 15500 | 0.3439 | 0.9335 |
0.119 | 3.7411 | 15750 | 0.3740 | 0.9289 |
0.1081 | 3.8005 | 16000 | 0.3389 | 0.9381 |
0.1138 | 3.8599 | 16250 | 0.3383 | 0.9358 |
0.123 | 3.9192 | 16500 | 0.3234 | 0.9369 |
0.1197 | 3.9786 | 16750 | 0.3422 | 0.9346 |
0.1351 | 4.0380 | 17000 | 0.3424 | 0.9312 |
0.1006 | 4.0974 | 17250 | 0.3290 | 0.9392 |
0.0989 | 4.1568 | 17500 | 0.3456 | 0.9346 |
0.1003 | 4.2162 | 17750 | 0.3636 | 0.9346 |
0.0911 | 4.2755 | 18000 | 0.3685 | 0.9346 |
0.0959 | 4.3349 | 18250 | 0.3547 | 0.9358 |
0.1057 | 4.3943 | 18500 | 0.3543 | 0.9323 |
0.1135 | 4.4537 | 18750 | 0.3506 | 0.9346 |
0.1083 | 4.5131 | 19000 | 0.3361 | 0.9369 |
0.0909 | 4.5724 | 19250 | 0.3597 | 0.9369 |
0.0966 | 4.6318 | 19500 | 0.3673 | 0.9369 |
0.0749 | 4.6912 | 19750 | 0.3665 | 0.9346 |
0.0987 | 4.7506 | 20000 | 0.3592 | 0.9335 |
0.111 | 4.8100 | 20250 | 0.3531 | 0.9335 |
0.0946 | 4.8694 | 20500 | 0.3502 | 0.9346 |
0.1023 | 4.9287 | 20750 | 0.3486 | 0.9346 |
0.0889 | 4.9881 | 21000 | 0.3491 | 0.9335 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.7.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ekiprop/roberta-sst2-fine-tuning-shuttleworth-t2
Base model
FacebookAI/roberta-base