Whisper small by ehzawad

This model is a fine-tuned version of openai/whisper-small on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1104
  • Wer: 31.3274

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2424 0.27 500 0.2407 63.1783
0.1559 0.53 1000 0.1633 48.0380
0.1255 0.8 1500 0.1394 42.6625
0.0899 1.07 2000 0.1231 38.6982
0.0872 1.34 2500 0.1172 37.3415
0.0755 1.6 3000 0.1091 35.4971
0.0786 1.87 3500 0.1042 34.6567
0.0499 2.14 4000 0.1047 33.2752
0.0468 2.4 4500 0.1027 32.7874
0.0436 2.67 5000 0.1019 32.2877
0.0379 2.94 5500 0.1000 31.7168
0.025 3.2 6000 0.1062 31.6455
0.0282 3.47 6500 0.1050 31.4699
0.0249 3.74 7000 0.1060 31.3737
0.0231 4.01 7500 0.1049 31.1969
0.0183 4.27 8000 0.1104 31.3274

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train ehzawad/whisper-small-bn

Evaluation results