Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our GitHub repository and paper for details.

Benchmark Results

Following is the average word error rate (WER) evaluated on the ESB datasets:

Model Average WER (โ†“) Encoder Size Decoder Size
whisper-tiny 22.01 7.63M 29.55M
lite-whisper-tiny-acc 22.97 7.41M 29.55M
lite-whisper-tiny 23.95 7.00M 29.55M
lite-whisper-tiny-fast 27.09 6.48M 29.55M
       
whisper-base 17.67 19.82M 52.00M
lite-whisper-base-acc 19.07 18.64M 52.00M
lite-whisper-base 19.71 17.44M 52.00M
lite-whisper-base-fast 23.05 16.07M 52.00M
       
whisper-small 15.89 87.00M 153.58M
lite-whisper-small-acc 15.37 76.99M 153.58M
lite-whisper-small 14.96 70.16M 153.58M
lite-whisper-small-fast 14.92 63.11M 153.58M
       
whisper-medium 15.12 305.68M 456.64M
lite-whisper-medium-acc 13.46 269.93M 456.64M
lite-whisper-medium 14.50 239.99M 456.64M
lite-whisper-medium-fast 14.52 215.31M 456.64M

Citation

If you use LiteASR in your research, please cite the following paper:

@misc{kamahori2025liteasrefficientautomaticspeech,
      title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation}, 
      author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci},
      year={2025},
      eprint={2502.20583},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2502.20583}, 
}
Downloads last month
4
Safetensors
Model size
781M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for efficient-speech/lite-whisper-medium-acc

Finetuned
(584)
this model

Collection including efficient-speech/lite-whisper-medium-acc