t5-base-korean-summarization

This is T5 model for korean text summarization.

Usage (HuggingFace Transformers)

import nltk
nltk.download('punkt')
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

model = AutoModelForSeq2SeqLM.from_pretrained('eenzeenee/t5-base-korean-summarization')
tokenizer = AutoTokenizer.from_pretrained('eenzeenee/t5-base-korean-summarization')

prefix = "summarize: "
sample = """
    μ•ˆλ…•ν•˜μ„Έμš”? 우리 (2ν•™λ…„)/(이 ν•™λ…„) μΉœκ΅¬λ“€ 우리 μΉœκ΅¬λ“€ 학ꡐ에 κ°€μ„œ μ§„μ§œ (2ν•™λ…„)/(이 ν•™λ…„) 이 되고 μ‹Άμ—ˆλŠ”λ° 학ꡐ에 λͺ» κ°€κ³  μžˆμ–΄μ„œ λ‹΅λ‹΅ν•˜μ£ ? 
    κ·Έλž˜λ„ 우리 μΉœκ΅¬λ“€μ˜ μ•ˆμ „κ³Ό 건강이 μ΅œμš°μ„ μ΄λ‹ˆκΉŒμš” μ˜€λŠ˜λΆ€ν„° μ„ μƒλ‹˜μ΄λž‘ 맀일 맀일 κ΅­μ–΄ 여행을 λ– λ‚˜λ³΄λ„λ‘ ν•΄μš”. 
    μ–΄/ μ‹œκ°„μ΄ 벌써 μ΄λ ‡κ²Œ λλ‚˜μš”? λŠ¦μ—ˆμ–΄μš”. λŠ¦μ—ˆμ–΄μš”. 빨리 κ΅­μ–΄ 여행을 λ– λ‚˜μ•Ό λΌμš”. 
    그런데 μ–΄/ ꡭ어여행을 λ– λ‚˜κΈ° 전에 μš°λ¦¬κ°€ 쀀비물을 챙겨야 되겠죠? κ΅­μ–΄ 여행을 λ– λ‚  μ€€λΉ„λ¬Ό, κ΅μ•ˆμ„ μ–΄λ–»κ²Œ 받을 수 μžˆλŠ”μ§€ μ„ μƒλ‹˜μ΄ μ„€λͺ…을 ν•΄μ€„κ²Œμš”. 
    (EBS)/(μ΄λΉ„μ—μŠ€) μ΄ˆλ“±μ„ κ²€μƒ‰ν•΄μ„œ λ“€μ–΄κ°€λ©΄μš” 첫화면이 μ΄λ ‡κ²Œ λ‚˜μ™€μš”. 
    자/ κ·ΈλŸ¬λ©΄μš” μ—¬κΈ° (X)/(μ—‘μŠ€) 눌러주(κ³ μš”)/(κ΅¬μš”). μ €κΈ° (동그라미)/(λ˜₯그라미) (EBS)/(μ΄λΉ„μ—μŠ€) (2μ£Ό)/(이 μ£Ό) λΌμ΄λΈŒνŠΉκ°•μ΄λΌκ³  λ˜μ–΄μžˆμ£ ? 
    κ±°κΈ°λ₯Ό λ°”λ‘œ κ°€κΈ°λ₯Ό λˆ„λ¦…λ‹ˆλ‹€. 자/ (λˆ„λ₯΄λ©΄μš”)/(눌λ₯΄λ©΄μš”). μ–΄λ–»κ²Œ λ˜λƒ? b/ λ°‘μœΌλ‘œ λ‚΄λ €μš” λ‚΄λ €μš” λ‚΄λ €μš” μ­‰ λ‚΄λ €μš”. 
    우리 λͺ‡ 학년이죠? μ•„/ (2ν•™λ…„)/(이 ν•™λ…„) 이죠 (2ν•™λ…„)/(이 ν•™λ…„)의 무슨 κ³Όλͺ©? κ΅­μ–΄. 
    μ΄λ²ˆμ£ΌλŠ” (1μ£Ό)/(일 μ£Ό) μ°¨λ‹ˆκΉŒμš” μ—¬κΈ° κ΅μ•ˆ. λ‹€μŒμ£ΌλŠ” μ—¬κΈ°μ„œ λ‹€μš΄μ„ λ°›μœΌλ©΄ λΌμš”. 
    이 κ΅μ•ˆμ„ 클릭을 ν•˜λ©΄, μ§œμž”/. μ΄λ ‡κ²Œ κ΅μž¬κ°€ λ‚˜μ˜΅λ‹ˆλ‹€ .이 κ΅μ•ˆμ„ (λ‹€μš΄)/(λ”°μš΄)λ°›μ•„μ„œ 우리 ꡭ어여행을 λ– λ‚  μˆ˜κ°€ μžˆμ–΄μš”. 
    그럼 우리 μ§„μ§œλ‘œ κ΅­μ–΄ 여행을 ν•œλ²ˆ λ– λ‚˜λ³΄λ„λ‘ ν•΄μš”? κ΅­μ–΄μ—¬ν–‰ 좜발. 자/ (1단원)/(일 단원) 제λͺ©μ΄ λ­”κ°€μš”? ν•œλ²ˆ μ°Ύμ•„λ΄μš”. 
    μ‹œλ₯Ό μ¦κ²¨μš” μ—μš”. κ·Έλƒ₯ μ‹œλ₯Ό μ½μ–΄μš” κ°€ μ•„λ‹ˆμ—μš”. μ‹œλ₯Ό 즐겨야 λΌμš” 즐겨야 돼. μ–΄λ–»κ²Œ 즐길까? 일단은 λ‚΄λ‚΄ μ‹œλ₯Ό μ¦κΈ°λŠ” 방법에 λŒ€ν•΄μ„œ 곡뢀λ₯Ό ν•  κ±΄λ°μš”. 
    그럼 μ˜€λŠ˜μ€μš” μ–΄λ–»κ²Œ μ¦κΈΈκΉŒμš”? 였늘 곡뢀할 λ‚΄μš©μ€μš” μ‹œλ₯Ό μ—¬λŸ¬ 가지 λ°©λ²•μœΌλ‘œ 읽기λ₯Ό κ³΅λΆ€ν• κ²λ‹ˆλ‹€. 
    μ–΄λ–»κ²Œ μ—¬λŸ¬κ°€μ§€ λ°©λ²•μœΌλ‘œ μ½μ„κΉŒ 우리 곡뢀해 보도둝 ν•΄μš”. 였늘의 μ‹œ λ‚˜μ™€λΌ μ§œμž”/! μ‹œκ°€ λ‚˜μ™”μŠ΅λ‹ˆλ‹€ μ‹œμ˜ 제λͺ©μ΄ λ­”κ°€μš”? λ‹€νˆ° λ‚ μ΄μ—μš” λ‹€νˆ° λ‚ . 
    λˆ„κ΅¬λž‘ λ‹€ν‰œλ‚˜ λ™μƒμ΄λž‘ λ‹€ν‰œλ‚˜ μ–Έλ‹ˆλž‘ μΉœκ΅¬λž‘? λˆ„κ΅¬λž‘ λ‹€ν‰œλŠ”μ§€ μ„ μƒλ‹˜μ΄ μ‹œλ₯Ό 읽어 쀄 ν…Œλ‹ˆκΉŒ ν•œλ²ˆ 생각을 해보도둝 ν•΄μš”."""

inputs = [prefix + sample]


inputs = tokenizer(inputs, max_length=512, truncation=True, return_tensors="pt")
output = model.generate(**inputs, num_beams=3, do_sample=True, min_length=10, max_length=64)
decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
result = nltk.sent_tokenize(decoded_output.strip())[0]

print('RESULT >>', result)

RESULT >> κ΅­μ–΄ 여행을 λ– λ‚˜κΈ° 전에 κ΅­μ–΄ 여행을 λ– λ‚  μ€€λΉ„λ¬Όκ³Ό κ΅μ•ˆμ„ μ–΄λ–»κ²Œ 받을 수 μžˆλŠ”μ§€ μ„ μƒλ‹˜μ΄ μ„€λͺ…ν•΄ μ€€λ‹€.

Evalutation Result

  • Korean Paper Summarization Dataset(λ…Όλ¬Έμžλ£Œ μš”μ•½)
    ROUGE-2-R 0.09868624890432466
    ROUGE-2-P 0.9666714545849712
    ROUGE-2-F 0.17250881441169427
    
  • Korean Book Summarization Dataset(λ„μ„œμžλ£Œ μš”μ•½)
    ROUGE-2-R 0.1575686156943213
    ROUGE-2-P 0.9718318136896944
    ROUGE-2-F 0.26548116834852586
    
  • Korean Summary statement and Report Generation Dataset(μš”μ•½λ¬Έ 및 레포트 생성 데이터)
    ROUGE-2-R 0.0987891733555808
    ROUGE-2-P 0.9276946867981899
    ROUGE-2-F 0.17726493110448185
    

Training

The model was trained with the parameters:

  • training arguments
Seq2SeqTrainingArguments(
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    auto_find_batch_size=False,
    weight_decay=0.01,
    learning_rate=4e-05,
    lr_scheduler_type=linear,
    num_train_epochs=3,
    fp16=True)

Model Architecture

T5ForConditionalGeneration(                                                                                                                                             
  (shared): Embedding(50358, 768)                                                                                                                                       
  (encoder): T5Stack(                                                                                                                                                   
    (embed_tokens): Embedding(50358, 768)                                                                                                                               
    (block): ModuleList(                                                                                                                                                
      (0): T5Block(                                                                                                                                                     
        (layer): ModuleList(                                                                                                                                            
          (0): T5LayerSelfAttention(                                                                                                                                    
            (SelfAttention): T5Attention(                                                                                                                               
              (q): Linear(in_features=768, out_features=768, bias=False)
              (k): Linear(in_features=768, out_features=768, bias=False)
              (v): Linear(in_features=768, out_features=768, bias=False)
              (o): Linear(in_features=768, out_features=768, bias=False)
              (relative_attention_bias): Embedding(32, 12)
            )        
            (layer_norm): T5LayerNorm()  
            (dropout): Dropout(p=0.1, inplace=False)
          )        
          (1): T5LayerFF(   
            (DenseReluDense): T5DenseGatedActDense(
              (wi_0): Linear(in_features=768, out_features=2048, bias=False)
              (wi_1): Linear(in_features=768, out_features=2048, bias=False)
              (wo): Linear(in_features=2048, out_features=768, bias=False)
              (dropout): Dropout(p=0.1, inplace=False)
              (act): NewGELUActivation()
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
      )
      (1~11): T5Block(
        (layer): ModuleList(
          (0): T5LayerSelfAttention(
            (SelfAttention): T5Attention(
              (q): Linear(in_features=768, out_features=768, bias=False)
              (k): Linear(in_features=768, out_features=768, bias=False)
              (v): Linear(in_features=768, out_features=768, bias=False)
              (o): Linear(in_features=768, out_features=768, bias=False)
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (1): T5LayerFF(
            (DenseReluDense): T5DenseGatedActDense(
              (wi_0): Linear(in_features=768, out_features=2048, bias=False)
              (wi_1): Linear(in_features=768, out_features=2048, bias=False)
              (wo): Linear(in_features=2048, out_features=768, bias=False)
              (dropout): Dropout(p=0.1, inplace=False)
              (act): NewGELUActivation()
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
      )
    )
    (final_layer_norm): T5LayerNorm()
    (dropout): Dropout(p=0.1, inplace=False)
  )
  (decoder): T5Stack(
    (embed_tokens): Embedding(50358, 768)
    (block): ModuleList(
      (0): T5Block(
        (layer): ModuleList(
          (0): T5LayerSelfAttention(
            (SelfAttention): T5Attention(
              (q): Linear(in_features=768, out_features=768, bias=False)
              (k): Linear(in_features=768, out_features=768, bias=False)
              (v): Linear(in_features=768, out_features=768, bias=False)
              (o): Linear(in_features=768, out_features=768, bias=False)
              (relative_attention_bias): Embedding(32, 12)
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (1): T5LayerCrossAttention(
            (EncDecAttention): T5Attention(
              (q): Linear(in_features=768, out_features=768, bias=False)
              (k): Linear(in_features=768, out_features=768, bias=False)
              (v): Linear(in_features=768, out_features=768, bias=False)
              (o): Linear(in_features=768, out_features=768, bias=False)
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (2): T5LayerFF(
            (DenseReluDense): T5DenseGatedActDense(
              (wi_0): Linear(in_features=768, out_features=2048, bias=False)
              (wi_1): Linear(in_features=768, out_features=2048, bias=False)
              (wo): Linear(in_features=2048, out_features=768, bias=False)
              (dropout): Dropout(p=0.1, inplace=False)
              (act): NewGELUActivation()
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
      )
      (1~11): T5Block(
        (layer): ModuleList(
          (0): T5LayerSelfAttention(
            (SelfAttention): T5Attention(
              (q): Linear(in_features=768, out_features=768, bias=False)
              (k): Linear(in_features=768, out_features=768, bias=False)
              (v): Linear(in_features=768, out_features=768, bias=False)
              (o): Linear(in_features=768, out_features=768, bias=False)
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (1): T5LayerCrossAttention(
            (EncDecAttention): T5Attention(
              (q): Linear(in_features=768, out_features=768, bias=False)
              (k): Linear(in_features=768, out_features=768, bias=False)
              (v): Linear(in_features=768, out_features=768, bias=False)
              (o): Linear(in_features=768, out_features=768, bias=False)
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (2): T5LayerFF(
            (DenseReluDense): T5DenseGatedActDense(
              (wi_0): Linear(in_features=768, out_features=2048, bias=False)
              (wi_1): Linear(in_features=768, out_features=2048, bias=False)
              (wo): Linear(in_features=2048, out_features=768, bias=False)
              (dropout): Dropout(p=0.1, inplace=False)
              (act): NewGELUActivation()
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
      )
      (final_layer_norm): T5LayerNorm()                              
    (dropout): Dropout(p=0.1, inplace=False)                                                                                           
  )                                                                
  (lm_head): Linear(in_features=768, out_features=50358, bias=False)                                                                   
)

Citation

  • Raffel, Colin, et al. "Exploring the limits of transfer learning with a unified text-to-text transformer." J. Mach. Learn. Res. 21.140 (2020): 1-67.
Downloads last month
625,962
Safetensors
Model size
276M params
Tensor type
F32
Β·
Inference API
Examples

Model tree for eenzeenee/t5-base-korean-summarization

Finetunes
2 models