Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: katuni4ka/tiny-random-qwen1.5-moe
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 7b43be7c0bda3cbf_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/7b43be7c0bda3cbf_train_data.json
  type:
    field_input: en_parse
    field_instruction: hi_en
    field_output: en
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 5
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: duyphu/ca0ecb84-9e99-4b82-b0d0-a892f241a499
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/7b43be7c0bda3cbf_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 72bed665-b815-4ffa-9428-8c4edf828a59
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 72bed665-b815-4ffa-9428-8c4edf828a59
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

ca0ecb84-9e99-4b82-b0d0-a892f241a499

This model is a fine-tuned version of katuni4ka/tiny-random-qwen1.5-moe on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.9345

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0000 1 11.9412
11.9447 0.0005 10 11.9401
11.9337 0.0009 20 11.9376
11.9335 0.0014 30 11.9357
11.9321 0.0018 40 11.9347
11.9267 0.0023 50 11.9345

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
22
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for duyphu/ca0ecb84-9e99-4b82-b0d0-a892f241a499

Adapter
(239)
this model