Quantizations of https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1
Open source inference clients/UIs
Closed source inference clients/UIs
- LM Studio
- Backyard AI
- More will be added...
From original readme
Llama-3.1-Nemotron-Nano-4B-v1.1 is a large language model (LLM) which is a derivative of nvidia/Llama-3.1-Minitron-4B-Width-Base, which is created from Llama 3.1 8B using our LLM compression technique and offers improvements in model accuracy and efficiency. It is a reasoning model that is post trained for reasoning, human chat preferences, and tasks, such as RAG and tool calling.
Llama-3.1-Nemotron-Nano-4B-v1.1 is a model which offers a great tradeoff between model accuracy and efficiency. The model fits on a single RTX GPU and can be used locally. The model supports a context length of 128K.
This model underwent a multi-phase post-training process to enhance both its reasoning and non-reasoning capabilities. This includes a supervised fine-tuning stage for Math, Code, Reasoning, and Tool Calling as well as multiple reinforcement learning (RL) stages using Reward-aware Preference Optimization (RPO) algorithms for both chat and instruction-following. The final model checkpoint is obtained after merging the final SFT and RPO checkpoints
This model is part of the Llama Nemotron Collection. You can find the other model(s) in this family here:
This model is ready for commercial use.
Quick Start and Usage Recommendations:
- Reasoning mode (ON/OFF) is controlled via the system prompt, which must be set as shown in the example below. All instructions should be contained within the user prompt
- We recommend setting temperature to
0.6
, and Top P to0.95
for Reasoning ON mode - We recommend using greedy decoding for Reasoning OFF mode
- We have provided a list of prompts to use for evaluation for each benchmark where a specific template is required
See the snippet below for usage with Hugging Face Transformers library. Reasoning mode (ON/OFF) is controlled via system prompt. Please see the example below.
Our code requires the transformers package version to be 4.44.2
or higher.
Example of “Reasoning On:”
import torch
import transformers
model_id = "nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1"
model_kwargs = {"torch_dtype": torch.bfloat16, "device_map": "auto"}
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
tokenizer=tokenizer,
max_new_tokens=32768,
temperature=0.6,
top_p=0.95,
**model_kwargs
)
# Thinking can be "on" or "off"
thinking = "on"
print(pipeline([{"role": "system", "content": f"detailed thinking {thinking}"}, {"role": "user", "content": "Solve x*(sin(x)+2)=0"}]))
Example of “Reasoning Off:”
import torch
import transformers
model_id = "nvidia/Llama-3.1-Nemotron-Nano-4B-v1"
model_kwargs = {"torch_dtype": torch.bfloat16, "device_map": "auto"}
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
tokenizer=tokenizer,
max_new_tokens=32768,
do_sample=False,
**model_kwargs
)
# Thinking can be "on" or "off"
thinking = "off"
print(pipeline([{"role": "system", "content": f"detailed thinking {thinking}"}, {"role": "user", "content": "Solve x*(sin(x)+2)=0"}]))
For some prompts, even though thinking is disabled, the model emergently prefers to think before responding. But if desired, the users can prevent it by pre-filling the assistant response.
import torch
import transformers
model_id = "nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1"
model_kwargs = {"torch_dtype": torch.bfloat16, "device_map": "auto"}
tokenizer = transformers.AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token_id = tokenizer.eos_token_id
# Thinking can be "on" or "off"
thinking = "off"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
tokenizer=tokenizer,
max_new_tokens=32768,
do_sample=False,
**model_kwargs
)
print(pipeline([{"role": "system", "content": f"detailed thinking {thinking}"}, {"role": "user", "content": "Solve x*(sin(x)+2)=0"}, {"role":"assistant", "content":"<think>\n</think>"}]))
Running a vLLM Server with Tool-call Support
Llama-3.1-Nemotron-Nano-4B-v1.1 supports tool calling. This HF repo hosts a tool-callilng parser as well as a chat template in Jinja, which can be used to launch a vLLM server.
Here is a shell script example to launch a vLLM server with tool-call support. vllm/vllm-openai:v0.6.6
or newer should support the model.
#!/bin/bash
CWD=$(pwd)
PORT=5000
git clone https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1
docker run -it --rm \
--runtime=nvidia \
--gpus all \
--shm-size=16GB \
-p ${PORT}:${PORT} \
-v ${CWD}:${CWD} \
vllm/vllm-openai:v0.6.6 \
--model $CWD/Llama-3.1-Nemotron-Nano-4B-v1.1 \
--trust-remote-code \
--seed 1 \
--host "0.0.0.0" \
--port $PORT \
--served-model-name "Llama-Nemotron-Nano-4B-v1.1" \
--tensor-parallel-size 1 \
--max-model-len 131072 \
--gpu-memory-utilization 0.95 \
--enforce-eager \
--enable-auto-tool-choice \
--tool-parser-plugin "${CWD}/Llama-3.1-Nemotron-Nano-4B-v1.1/llama_nemotron_nano_toolcall_parser.py" \
--tool-call-parser "llama_nemotron_json" \
--chat-template "${CWD}/Llama-3.1-Nemotron-Nano-4B-v1.1/llama_nemotron_nano_generic_tool_calling.jinja"
Alternatively, you can use a virtual environment to launch a vLLM server like below.
$ git clone https://huggingface.co/nvidia/Llama-3.1-Nemotron-Nano-4B-v1.1
$ conda create -n vllm python=3.12 -y
$ conda activate vllm
$ python -m vllm.entrypoints.openai.api_server \
--model Llama-3.1-Nemotron-Nano-4B-v1.1 \
--trust-remote-code \
--seed 1 \
--host "0.0.0.0" \
--port 5000 \
--served-model-name "Llama-Nemotron-Nano-4B-v1.1" \
--tensor-parallel-size 1 \
--max-model-len 131072 \
--gpu-memory-utilization 0.95 \
--enforce-eager \
--enable-auto-tool-choice \
--tool-parser-plugin "Llama-3.1-Nemotron-Nano-4B-v1.1/llama_nemotron_nano_toolcall_parser.py" \
--tool-call-parser "llama_nemotron_json" \
--chat-template "Llama-3.1-Nemotron-Nano-4B-v1.1/llama_nemotron_nano_generic_tool_calling.jinja"
After launching a vLLM server, you can call the server with tool-call support using a Python script like below.
>>> from openai import OpenAI
>>> client = OpenAI(
base_url="http://0.0.0.0:5000/v1",
api_key="dummy",
)
>>> completion = client.chat.completions.create(
model="Llama-Nemotron-Nano-v1.1",
messages=[
{"role": "system", "content": "detailed thinking on"},
{"role": "user", "content": "My bill is $100. What will be the amount for 18% tip?"},
],
tools=[
{"type": "function", "function": {"name": "calculate_tip", "parameters": {"type": "object", "properties": {"bill_total": {"type": "integer", "description": "The total amount of the bill"}, "tip_percentage": {"type": "integer", "description": "The percentage of tip to be applied"}}, "required": ["bill_total", "tip_percentage"]}}},
{"type": "function", "function": {"name": "convert_currency", "parameters": {"type": "object", "properties": {"amount": {"type": "integer", "description": "The amount to be converted"}, "from_currency": {"type": "string", "description": "The currency code to convert from"}, "to_currency": {"type": "string", "description": "The currency code to convert to"}}, "required": ["from_currency", "amount", "to_currency"]}}},
],
)
>>> completion.choices[0].message.content
'<think>\nOkay, let\'s see. The user has a bill of $100 and wants to know the amount of a 18% tip. So, I need to calculate the tip amount. The available tools include calculate_tip, which requires bill_total and tip_percentage. The parameters are both integers. The bill_total is 100, and the tip percentage is 18. So, the function should multiply 100 by 18% and return 18.0. But wait, maybe the user wants the total including the tip? The question says "the amount for 18% tip," which could be interpreted as the tip amount itself. Since the function is called calculate_tip, it\'s likely that it\'s designed to compute the tip, not the total. So, using calculate_tip with bill_total=100 and tip_percentage=18 should give the correct result. The other function, convert_currency, isn\'t relevant here. So, I should call calculate_tip with those values.\n</think>\n\n'
>>> completion.choices[0].message.tool_calls
[ChatCompletionMessageToolCall(id='chatcmpl-tool-2972d86817344edc9c1e0f9cd398e999', function=Function(arguments='{"bill_total": 100, "tip_percentage": 18}', name='calculate_tip'), type='function')]
- Downloads last month
- 559
1-bit
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit