dumyy's picture
Update README.md
deee710 verified
|
raw
history blame
1.99 kB
metadata
license: mit
base_model: BAAI/bge-small-zh-v1.5
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: sft-bge-bert24m-to-sentiment
    results: []
pipeline_tag: text-classification
datasets:
  - tyqiangz/multilingual-sentiments
widget:
  - text: 王女士最近和老板吵了一架,似乎心情很沮丧。

sft-bge-bert24m-to-sentiment

This model is a fine-tuned version of BAAI/bge-small-zh-v1.5 on a dataset tyqiangz/multilingual-sentiment(name = 'chinese'). It achieves the following results on the evaluation set:

  • Loss: 0.5434
  • Accuracy: 0.779

Usage for the Model

# Use a pipeline as a high-level helper
from transformers import pipeline

pipe = pipeline("text-classification", model="dumyy/sft-bge-bert24m-to-sentiment")

result = pipe("我最近遇到了很糟糕的事,让我异常郁闷。")

print(result)

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.534 1.0 3750 0.5576 0.7653
0.4898 2.0 7500 0.5434 0.779

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2