add AIBOM
#21
by
RiccardoDav
- opened
- dslim_bert-base-NER.json +169 -0
dslim_bert-base-NER.json
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bomFormat": "CycloneDX",
|
3 |
+
"specVersion": "1.6",
|
4 |
+
"serialNumber": "urn:uuid:2d71328a-f87c-48dc-9f4e-ba83929b1cb0",
|
5 |
+
"version": 1,
|
6 |
+
"metadata": {
|
7 |
+
"timestamp": "2025-06-05T09:39:43.530276+00:00",
|
8 |
+
"component": {
|
9 |
+
"type": "machine-learning-model",
|
10 |
+
"bom-ref": "dslim/bert-base-NER-40551b74-59a4-53a9-ae36-e1dca4f66e41",
|
11 |
+
"name": "dslim/bert-base-NER",
|
12 |
+
"externalReferences": [
|
13 |
+
{
|
14 |
+
"url": "https://huggingface.co/dslim/bert-base-NER",
|
15 |
+
"type": "documentation"
|
16 |
+
}
|
17 |
+
],
|
18 |
+
"modelCard": {
|
19 |
+
"modelParameters": {
|
20 |
+
"task": "token-classification",
|
21 |
+
"architectureFamily": "bert",
|
22 |
+
"modelArchitecture": "BertForTokenClassification",
|
23 |
+
"datasets": [
|
24 |
+
{
|
25 |
+
"ref": "conll2003-be67a053-25af-52ad-93c8-134501f8fa4b"
|
26 |
+
}
|
27 |
+
]
|
28 |
+
},
|
29 |
+
"properties": [
|
30 |
+
{
|
31 |
+
"name": "library_name",
|
32 |
+
"value": "transformers"
|
33 |
+
}
|
34 |
+
],
|
35 |
+
"quantitativeAnalysis": {
|
36 |
+
"performanceMetrics": [
|
37 |
+
{
|
38 |
+
"slice": "dataset: conll2003, split: test, config: conll2003",
|
39 |
+
"type": "accuracy",
|
40 |
+
"value": 0.9118041001560013
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"slice": "dataset: conll2003, split: test, config: conll2003",
|
44 |
+
"type": "precision",
|
45 |
+
"value": 0.9211550382257732
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"slice": "dataset: conll2003, split: test, config: conll2003",
|
49 |
+
"type": "recall",
|
50 |
+
"value": 0.9306415698281261
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"slice": "dataset: conll2003, split: test, config: conll2003",
|
54 |
+
"type": "f1",
|
55 |
+
"value": 0.9258740048459675
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"slice": "dataset: conll2003, split: test, config: conll2003",
|
59 |
+
"type": "loss",
|
60 |
+
"value": 0.48325642943382263
|
61 |
+
}
|
62 |
+
]
|
63 |
+
}
|
64 |
+
},
|
65 |
+
"authors": [
|
66 |
+
{
|
67 |
+
"name": "dslim"
|
68 |
+
}
|
69 |
+
],
|
70 |
+
"licenses": [
|
71 |
+
{
|
72 |
+
"license": {
|
73 |
+
"id": "MIT",
|
74 |
+
"url": "https://spdx.org/licenses/MIT.html"
|
75 |
+
}
|
76 |
+
}
|
77 |
+
],
|
78 |
+
"description": "**bert-base-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).Specifically, this model is a *bert-base-cased* model that was fine-tuned on the English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset.If you'd like to use a larger BERT-large model fine-tuned on the same dataset, a [**bert-large-NER**](https://huggingface.co/dslim/bert-large-NER/) version is also available.",
|
79 |
+
"tags": [
|
80 |
+
"transformers",
|
81 |
+
"pytorch",
|
82 |
+
"tf",
|
83 |
+
"jax",
|
84 |
+
"onnx",
|
85 |
+
"safetensors",
|
86 |
+
"bert",
|
87 |
+
"token-classification",
|
88 |
+
"en",
|
89 |
+
"dataset:conll2003",
|
90 |
+
"arxiv:1810.04805",
|
91 |
+
"license:mit",
|
92 |
+
"model-index",
|
93 |
+
"autotrain_compatible",
|
94 |
+
"endpoints_compatible",
|
95 |
+
"region:us"
|
96 |
+
]
|
97 |
+
}
|
98 |
+
},
|
99 |
+
"components": [
|
100 |
+
{
|
101 |
+
"type": "data",
|
102 |
+
"bom-ref": "conll2003-be67a053-25af-52ad-93c8-134501f8fa4b",
|
103 |
+
"name": "conll2003",
|
104 |
+
"data": [
|
105 |
+
{
|
106 |
+
"type": "dataset",
|
107 |
+
"bom-ref": "conll2003-be67a053-25af-52ad-93c8-134501f8fa4b",
|
108 |
+
"name": "conll2003",
|
109 |
+
"contents": {
|
110 |
+
"url": "https://huggingface.co/datasets/conll2003",
|
111 |
+
"properties": [
|
112 |
+
{
|
113 |
+
"name": "task_categories",
|
114 |
+
"value": "token-classification"
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"name": "task_ids",
|
118 |
+
"value": "named-entity-recognition, part-of-speech"
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"name": "language",
|
122 |
+
"value": "en"
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"name": "size_categories",
|
126 |
+
"value": "10K<n<100K"
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"name": "annotations_creators",
|
130 |
+
"value": "crowdsourced"
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"name": "language_creators",
|
134 |
+
"value": "found"
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"name": "pretty_name",
|
138 |
+
"value": "CoNLL-2003"
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"name": "source_datasets",
|
142 |
+
"value": "extended|other-reuters-corpus"
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"name": "paperswithcode_id",
|
146 |
+
"value": "conll-2003"
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"name": "license",
|
150 |
+
"value": "other"
|
151 |
+
}
|
152 |
+
]
|
153 |
+
},
|
154 |
+
"governance": {
|
155 |
+
"owners": [
|
156 |
+
{
|
157 |
+
"organization": {
|
158 |
+
"name": "eriktks",
|
159 |
+
"url": "https://huggingface.co/eriktks"
|
160 |
+
}
|
161 |
+
}
|
162 |
+
]
|
163 |
+
},
|
164 |
+
"description": "The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on\nfour types of named entities: persons, locations, organizations and names of miscellaneous entities that do\nnot belong to the previous three groups.\n\nThe CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on\na separate line and there is an empty line after each sentence. The first item on each line is a word, the second\na part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags\nand the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only\nif two phrases of the same type immediately follow each other, the first word of the second phrase will have tag\nB-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2\ntagging scheme, whereas the original dataset uses IOB1.\n\nFor more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419"
|
165 |
+
}
|
166 |
+
]
|
167 |
+
}
|
168 |
+
]
|
169 |
+
}
|