YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
DrMedra4b-179916
This is a merged LoRA model based on Google's MedGemma-4b-it, fine-tuned for medical applications.
Model Details
- Base Model: google/medgemma-4b-it
- Checkpoint: 179916
- Format: SafeTensors
- Architecture: Gemma3
- Fine-tuning Method: LoRA (Low-Rank Adaptation)
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load model and tokenizer
model_name = "DrMedra4b-179916"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Example usage
prompt = "What are the symptoms of diabetes?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=128)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Training Configuration
- LoRA Rank: 198
- LoRA Alpha: 64
- Learning Rate: 2.5e-6
- Batch Size: 4
- Sequence Length: 768
- Epochs: 2.0
License
This model inherits the license from the base model (google/medgemma-4b-it).
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support