Edit model card

Model Card for Model ID

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

from peft import PeftModel
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer

MODEL_ID = "google/gemma-2-9b-it"
PEFT_MODEL_ID = "drlee1/gemma2-9b-it-qdora-summary"

model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map = 'auto', torch_dtype = torch.float16)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

model = PeftModel.from_pretrained(model, PEFT_MODEL_ID, device_map = 'auto', torch_dtype = torch.float16)

pipe = pipeline("text-generation", model = model, tokenizer = tokenizer, max_new_tokens = 512)

doc = "..."

messages = [
    {"role": "user", "content": "다음 글을 요약해주세요:\n\n{}".format(doc)}
]

prompt = tokenizer.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)

outputs = pipe(
    prompt,
    do_sample = True,
    temperature = .2,
    top_k = 50,
    top_p = .95,
    add_special_tokens = True 
)

print(outputs[0]['generated_text'][len(prompt):])

Template

# chat template
<bos><start_of_turn>user\n다음 글을 요약해주세요:\n\n{data}<end_of_turn>\n<start_of_turn>model\n{label}

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

  • SFT
  • Quantization
  • DoRA

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • per_device_train_batch_size: 2
  • gradient_accumulation_steps: 4
  • optimization: paged_adamw_8bit
  • lr: 2e-4
  • bf16: True
  • max_steps: 500

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

  • Training Loss
Step Training Loss
100 1.528100
200 1.409400
300 1.372800
400 1.325900
500 1.341600

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for drlee1/gemma2-9b-it-qdora-summary

Base model

google/gemma-2-9b
Finetuned
(64)
this model

Dataset used to train drlee1/gemma2-9b-it-qdora-summary