RAG Models
Collection
13 items
•
Updated
DRC-RAG-LLM is a Retrieval-Augmented Generation (RAG) scenario–optimized LLM based on Qwen1.5. We developed two RAG scenarios tasks—Retrieve Chunk Citation and Chinese Textual Table Understanding, then fine-tuned DRC-RAG-LLM on these tasks while preserving most of the general language capabilities of the base model. In addition, DRC-RAG-LLM demonstrates strong performance compared to ChatGPT and GPT-4o on two RAG scenarios tasks.
Model | Precision | Recall | F1 |
---|---|---|---|
Fine-tuned | |||
DRC-RAG-LLM-7B | 73.61 | 90.24 | 81.08 |
DRC-RAG-LLM-14B | 79.55 | 91.71 | 85.20 |
Non-Fine-tuned | |||
Breeze-7B-Instruct-v1_0 | 28.53 | 14.47 | 19.2 |
Llama3-TAIDE-LX-8B-Chat | 39.74 | 32.03 | 30.39 |
Llama-3-Taiwan-8B-Instruct | 29.89 | 10.08 | 16.08 |
Qwen1.5-7B-Chat | 22.12 | 7.48 | 11.18 |
Qwen1.5-14B-Chat | 36.82 | 15.45 | 21.76 |
OpenAI Models | |||
ChatGPT | 60.00 | 52.68 | 56.1 |
GPT-4o | 62.02 | 66.33 | 64.1 |
Model | Table QA | Table summarization |
---|---|---|
Fine-tuned | ||
DRC-RAG-LLM-7B | 66.6 | 56.6 |
DRC-RAG-LLM-14B | 75.6 | 61.0 |
Non-Fine-tuned | ||
Breeze-7B-Instruct-v1_0 | 59.4 | 55.6 |
Llama3-TAIDE-LX-8B-Chat | 55.6 | 48.2 |
Llama-3-Taiwan-8B-Instruct | 63.8 | 38.6 |
Qwen1.5-7B-Chat | 54.2 | 41.4 |
Qwen1.5-14B-Chat | 62.4 | 55.4 |
OpenAI Models | ||
ChatGPT | 70.0 | 48.2 |
GPT-4o | 82.6 | 85.9 |