metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
- lewtun/dog_food
metrics:
- accuracy
base_model: microsoft/resnet-18
model-index:
- name: resnet-18-finetuned-dogfood
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: lewtun/dog_food
type: lewtun/dog_food
args: lewtun--dog_food
metrics:
- type: accuracy
value: 0.896
name: Accuracy
- task:
type: image-classification
name: Image Classification
dataset:
name: lewtun/dog_food
type: lewtun/dog_food
config: lewtun--dog_food
split: test
metrics:
- type: accuracy
value: 0.8466666666666667
name: Accuracy
verified: true
- type: precision
value: 0.8850127293141284
name: Precision Macro
verified: true
- type: precision
value: 0.8466666666666667
name: Precision Micro
verified: true
- type: precision
value: 0.8939157698241645
name: Precision Weighted
verified: true
- type: recall
value: 0.8555113273379528
name: Recall Macro
verified: true
- type: recall
value: 0.8466666666666667
name: Recall Micro
verified: true
- type: recall
value: 0.8466666666666667
name: Recall Weighted
verified: true
- type: f1
value: 0.8431399312051647
name: F1 Macro
verified: true
- type: f1
value: 0.8466666666666667
name: F1 Micro
verified: true
- type: f1
value: 0.8430272582865614
name: F1 Weighted
verified: true
- type: loss
value: 0.3633290231227875
name: loss
verified: true
- type: matthews_correlation
value: 0.7973101366252381
name: matthews_correlation
verified: true
resnet-18-finetuned-dogfood
This model is a fine-tuned version of microsoft/resnet-18 on the lewtun/dog_food dataset. It achieves the following results on the evaluation set:
- Loss: 0.2991
- Accuracy: 0.896
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.846 | 1.0 | 16 | 0.2662 | 0.9156 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1