File size: 30,031 Bytes
fc738dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: Snowflake/snowflake-arctic-embed-l
widget:
- source_sentence: What did the author plan to do with the dark meat and carcass after
    cooking the turkey?
  sentences:
  - 'Let’s say a family of four wants to spend only $365 per month on groceries, saving
    them $579 per month over that USDA average family in the link above. Investing
    this savings would compound into about $102,483.00 every ten years, which would
    obviously make a pretty big improvement in the financial health of the average
    young family.

    To hit a monthly grocery spending target like that, you first have to understand
    what you are buying. There are four mouths to feed, each consuming three meals
    a day or 91.25 meals per month. Let’s say they all need adult levels of calories,
    so about 2000 per day.'
  - When you eat beans and rice in the same meal, you’re getting complete protein
    at virtually no cost. Nuts and especially peanut butter are also a good way to
    mix high calories with built-in protein. Eggs contain the highest quality complete
    protein of all (6 grams per egg), so I enjoy three of them every day.
  - 'Turkey 101 Follow-up

    Thought I’d share how my freezer “spring clean” is going. In an attempt to reduce
    the number of trips to the grocery store in April, I’ve taken on the challenge
    to use up what I have first. Here’s my first attempt at staying away from the
    deli-counter:

    Day 1- After anxiously awaiting the 3 day defrost, ready to cook turkey! Easy
    enough. Since I usually overcook meat (just to make sure it’s dead), decided to
    cook it breast side down; using gravity to my advantage, resulting in big, juicy
    breasts (just like my hubby likes). Save dark meat for later. Freeze some white
    meat, slice some for sandwiches, make broth from carcass.'
- source_sentence: What are the benefits of using whole oils in your diet according
    to the context?
  sentences:
  - 'What to Eat

    Finally, the fun part! As the wise people of India have proven beyond all other
    cultures*, amazing food is all about preparation and spices, rather than starting
    with costly ingredients. Once you know which ingredients make good staples, you
    can easily poke around on the Internet or in any cookbook to find an infinite
    number of good recipes that use them.

    At the simplest “bachelor” level, you’ve got recipes like:

    Fancy home fries:'
  - 'Aha.. now things are sounding much better. Although not all of the foods above
    cost less than $1 per meal, they can certainly average out to less than that,
    depending on how you combine them. And when planning your menu to meet a certain
    budget, averaging out is exactly your goal. You still want to be able to eat apples,
    organic chicken breast, or whatever your heart desires. You just have to not eat
    entirely those most expensive foods.

    And remember, this $1.00 target is just something I picked out of a hat for an
    example – you’re allowed to spend whatever works for you.'
  - Whole oils are the ultimate example. They are packed with tasty, slow-metabolizing
    calories, extremely good for you, and easy to mix into your diet. Using olive
    oil as an example, you can one third of a day worth of calories for 57 cents.
    Every time you dump these oils into a frying pan, or mix them into a recipe or
    a salad dressing, you’re lowering your food cost  the oil provides calories that
    your body might otherwise get from cans of Coke, Filet Mignon, or Burger King
    dollar menu burgers.
- source_sentence: What ingredients did the "Master Mix" consist of, and how was it
    used in cooking?
  sentences:
  - 'Day 4- Morph yesterdays’ meal into a turkey pot pie. Thankfully, pie crust does
    not require yeast….I think. Decide to skip the 99 cent pre-packaged spice mix,
    and make my own taco seasoning?! I don’t have any maltodextrin, modified corn
    starch, autolyzed yeast extract, or caramel color (sulfites) in my cupboard; so
    hope it turns out okay. Cook up the remaining meat for turkey tacos, and freeze
    half for later.

    Day 5- Enjoy eating leftovers.'
  - This is a fantastic article.  I’m generally responsible for our family’s grocery
    shopping since I do the dinner cooking.  Our budget is $185 for a family of four
    per two weeks (two boys are almost 4 and 16 months).  Some two-weeks are tight,
    but it’s been worthwhile for our bottom line to keep the budget set.  We also
    budget $20 for restaurants per 2 weeks.  Yes, I know we can’t go out on that,
    but if we save it up, we can go out once a month or so, or order pizza one week,
    or some combination.  I’m sure our budget will increase when the boys get older,
    but by then, we should be bringing in more money, so we plan on being able to
    absorb the increase.  Eating healthy and abundantly doesn’t have to be expensive,
    but it does require work and
  - 'When I was growing up, my parents had 9 mouths to feed, and I remember my mom
    making something called a “Master Mix”.  It was basically a biscuit mix with the
    butter mixed in already, which she kept in a 4-liter ice cream pail.  She’d use
    it to make pizza dough (among other things),  and she’d top it with canned tomato
    soup (still condensed), shredded carrots and broccoli and cheddar cheese.  My
    siblings and I have confessed an occasional desire to eat it again, although I
    don’t know I’d ever try it out on my own kids.


    Reply







    Diane

    April 9, 2020, 11:30 pm'
- source_sentence: What changes were made to the homeowners insurance policy to achieve
    a $600 reduction?
  sentences:
  - 'And contrary to the 1990s low-fat-diet fad, the human body loves oil. It’s yummy,
    clean-burning, good for a giant range of body functions, and it is satisfying
    to eat too. I eat a fairly high-fat/low-carb diet these days, yet I’m leaner than
    ever, because the oily food doesn’t cause spikes of fake appetite like bread does.
    I’ve even been known to bring containers of herb-infused olive oil on road trips,
    supplementing every meal with this supercharger nutrient, especially when it’s
    time for an extreme hike or a high-energy work day.

    See Article: The Amazing Waist-Slimming, Wallet-Fattening Nutrient'
  - First thing- reduced insurance by $600 with increasing the homeowners deductible
    from $500 to $1000, and switching providers. Be warned- was not informed about
    the “unannounced 3rd party” that would be knocking on my door, as well as the
    additional cost to reappraise some items- but still overall a reduction. Second-
    dropped the gym membership ($131/month). Now don’t have to feel guilty about not
    going. Enjoy the outdoors more anyhow. Third- scaled back on vacation. I’m actually
    “on vacation” everyday, as even with all the expenses, we’re at FI.
  - 'Reply





    beachmama

    January 31, 2017, 11:39 am



    As a 25+ year veg, 12 year vegan, I’ve always supplemented b-12. After getting
    blood work done I found I was critically low in D3. Turns out it’s not just because
    I’m a woman over 50 (now 61) and through menopause, or that I’ve been veg for
    over half my life, I’m fit and walk the beach 20 miles a week so getting sun isn’t
    enough even in California. Apparently most people are D3 deficient but never know
    until they become symptomatic or have a blood test. I recommend you get a simple
    test to check on b-12 and d3 just to make sure you’re in good shape. And you are
    SO right about protein . . . Westerners eat FAR too much protein ; )


    Reply













    riley

    March 29, 2012, 7:07 am'
- source_sentence: What additional ingredients are suggested to increase protein content
    in the context?
  sentences:
  - 'Those are just two simple recipes. The key to frugal eating is to have at least
    ten good things you know how to make.

    There are many chefs among the readers. Maybe we will get to hear some of their
    best low-cost and easy-to-make creations in the comments section below?

    Further Reading:

    Grocery Shopping with your Middle Finger – an old MMM classic on this same topic,
    where I first started thinking about cost per calorie. But there I  was dealing
    with food stockups and sales rather than thinking of it on a per-meal or per-month
    basis.

    * According to the strong opinion of my own taste buds'
  - 'Thanks for this timely article! In the midst of the March Challenge; was trying
    to determine the next item to tackle- and groceries was it! How’d you know it
    was $1000? Hmmm….psychic.

    I FINALLY updated all the spending on Quicken last month to make myself stare
    it in the face. No surprises; not ugly, but not very pretty either. The most valuable
    outcome of the exercise was showing my husband that his hard efforts are appreciated,
    and I’m stepping up!'
  - cocoa and maybe some ground flax or whatever is lying around) for an extra 40
    grams of protein.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.7582417582417582
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9120879120879121
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.945054945054945
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9725274725274725
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7582417582417582
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.304029304029304
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18901098901098898
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09725274725274723
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7582417582417582
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9120879120879121
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.945054945054945
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9725274725274725
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.870936179086928
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.837580673294959
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8395868579934513
      name: Cosine Map@100
    - type: cosine_accuracy@1
      value: 0.66
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.76
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.88
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.66
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2533333333333333
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17599999999999993
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.08999999999999998
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.66
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.76
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.88
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7735850437783321
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7328571428571431
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7377450230928493
      name: Cosine Map@100
---

# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'What additional ingredients are suggested to increase protein content in the context?',
    'cocoa and maybe some ground flax or whatever is lying around) for an extra 40 grams of protein.',
    'Thanks for this timely article! In the midst of the March Challenge; was trying to determine the next item to tackle- and groceries was it! How’d you know it was $1000? Hmmm….psychic.\nI FINALLY updated all the spending on Quicken last month to make myself stare it in the face. No surprises; not ugly, but not very pretty either. The most valuable outcome of the exercise was showing my husband that his hard efforts are appreciated, and I’m stepping up!',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7582     |
| cosine_accuracy@3   | 0.9121     |
| cosine_accuracy@5   | 0.9451     |
| cosine_accuracy@10  | 0.9725     |
| cosine_precision@1  | 0.7582     |
| cosine_precision@3  | 0.304      |
| cosine_precision@5  | 0.189      |
| cosine_precision@10 | 0.0973     |
| cosine_recall@1     | 0.7582     |
| cosine_recall@3     | 0.9121     |
| cosine_recall@5     | 0.9451     |
| cosine_recall@10    | 0.9725     |
| **cosine_ndcg@10**  | **0.8709** |
| cosine_mrr@10       | 0.8376     |
| cosine_map@100      | 0.8396     |

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.66       |
| cosine_accuracy@3   | 0.76       |
| cosine_accuracy@5   | 0.88       |
| cosine_accuracy@10  | 0.9        |
| cosine_precision@1  | 0.66       |
| cosine_precision@3  | 0.2533     |
| cosine_precision@5  | 0.176      |
| cosine_precision@10 | 0.09       |
| cosine_recall@1     | 0.66       |
| cosine_recall@3     | 0.76       |
| cosine_recall@5     | 0.88       |
| cosine_recall@10    | 0.9        |
| **cosine_ndcg@10**  | **0.7736** |
| cosine_mrr@10       | 0.7329     |
| cosine_map@100      | 0.7377     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 100 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 100 samples:
  |         | sentence_0                                                                        | sentence_1                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 16.78 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 132.1 tokens</li><li>max: 195 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                          | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the significance of the date Mar 29, 2012, in relation to grocery expenses?</code>                                                                    | <code>Killing your $1000 Grocery Bill<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Home<br>Media<br>Contact<br><br><br><br> Email<br> RSS<br><br><br><br><br><br><br><br>Start Here<br>About<br>Random<br><br>MMM Recommends<br>Forum<br>MMM Classics<br><br><br>Mr. Money Mustache<br><br><br><br><br>					View: Fancy Magazine | Classic Blog<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Mar 29, 2012<br>428 comments<br>Killing your $1000 Grocery Bill</code> |
  | <code>Wut do u think about spendin eighty dolars a week on food for a family?</code>                                                                                | <code>“Eighty dollars a week on food for the three of you? That’s IT??”, said a friend, “We spend more than three times that amount!!”<br>“Whoa”, I replied, “I guess I’m not as spendy as I thought”.<br>Of course, the person telling me about her high food bill was more of a typical high-income spender in many ways. Her family also took out loans to buy new cars, had at least one $2500 carbon fiber road bike gleaming in the garage, and hired out the household chores to allow them to conveniently work a double-career-with-kids while still taking plenty of short vacations involving air travel. Looking back, I probably could have predicted a non-Mustachian grocery bill.</code>                                |
  | <code>What factors contribute to the varying cost of living in the United States, and how can individuals make choices to manage their spending effectively?</code> | <code>But the experience still reminded me of the amazing variety of spending levels we all have available to us here in the United States. It is simultaneously one of the cheapest industrialized countries in the world to live in, and the most expensive. It all depends on the choices you make in your shopping, because everything in the world is available right here for your buying convenience.</code>                                                                                                                                                                                                                                                                                                                     |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 10
- `per_device_eval_batch_size`: 10
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch | Step | cosine_ndcg@10 |
|:-----:|:----:|:--------------:|
| 1.0   | 10   | 0.8684         |
| 2.0   | 20   | 0.8698         |
| 3.0   | 30   | 0.8699         |
| 4.0   | 40   | 0.8706         |
| 5.0   | 50   | 0.8709         |
| 1.0   | 5    | 0.7269         |
| 2.0   | 10   | 0.7437         |
| 3.0   | 15   | 0.7539         |
| 4.0   | 20   | 0.7727         |
| 5.0   | 25   | 0.7736         |


### Framework Versions
- Python: 3.13.1
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.6.0
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->