don-unagi commited on
Commit
fc738dd
·
verified ·
1 Parent(s): 1780328

Upload model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,717 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:100
8
+ - loss:MatryoshkaLoss
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: Snowflake/snowflake-arctic-embed-l
11
+ widget:
12
+ - source_sentence: What did the author plan to do with the dark meat and carcass after
13
+ cooking the turkey?
14
+ sentences:
15
+ - 'Let’s say a family of four wants to spend only $365 per month on groceries, saving
16
+ them $579 per month over that USDA average family in the link above. Investing
17
+ this savings would compound into about $102,483.00 every ten years, which would
18
+ obviously make a pretty big improvement in the financial health of the average
19
+ young family.
20
+
21
+ To hit a monthly grocery spending target like that, you first have to understand
22
+ what you are buying. There are four mouths to feed, each consuming three meals
23
+ a day or 91.25 meals per month. Let’s say they all need adult levels of calories,
24
+ so about 2000 per day.'
25
+ - When you eat beans and rice in the same meal, you’re getting complete protein
26
+ at virtually no cost. Nuts and especially peanut butter are also a good way to
27
+ mix high calories with built-in protein. Eggs contain the highest quality complete
28
+ protein of all (6 grams per egg), so I enjoy three of them every day.
29
+ - 'Turkey 101 Follow-up
30
+
31
+ Thought I’d share how my freezer “spring clean” is going. In an attempt to reduce
32
+ the number of trips to the grocery store in April, I’ve taken on the challenge
33
+ to use up what I have first. Here’s my first attempt at staying away from the
34
+ deli-counter:
35
+
36
+ Day 1- After anxiously awaiting the 3 day defrost, ready to cook turkey! Easy
37
+ enough. Since I usually overcook meat (just to make sure it’s dead), decided to
38
+ cook it breast side down; using gravity to my advantage, resulting in big, juicy
39
+ breasts (just like my hubby likes). Save dark meat for later. Freeze some white
40
+ meat, slice some for sandwiches, make broth from carcass.'
41
+ - source_sentence: What are the benefits of using whole oils in your diet according
42
+ to the context?
43
+ sentences:
44
+ - 'What to Eat
45
+
46
+ Finally, the fun part! As the wise people of India have proven beyond all other
47
+ cultures*, amazing food is all about preparation and spices, rather than starting
48
+ with costly ingredients. Once you know which ingredients make good staples, you
49
+ can easily poke around on the Internet or in any cookbook to find an infinite
50
+ number of good recipes that use them.
51
+
52
+ At the simplest “bachelor” level, you’ve got recipes like:
53
+
54
+ Fancy home fries:'
55
+ - 'Aha.. now things are sounding much better. Although not all of the foods above
56
+ cost less than $1 per meal, they can certainly average out to less than that,
57
+ depending on how you combine them. And when planning your menu to meet a certain
58
+ budget, averaging out is exactly your goal. You still want to be able to eat apples,
59
+ organic chicken breast, or whatever your heart desires. You just have to not eat
60
+ entirely those most expensive foods.
61
+
62
+ And remember, this $1.00 target is just something I picked out of a hat for an
63
+ example – you’re allowed to spend whatever works for you.'
64
+ - Whole oils are the ultimate example. They are packed with tasty, slow-metabolizing
65
+ calories, extremely good for you, and easy to mix into your diet. Using olive
66
+ oil as an example, you can one third of a day worth of calories for 57 cents.
67
+ Every time you dump these oils into a frying pan, or mix them into a recipe or
68
+ a salad dressing, you’re lowering your food cost – the oil provides calories that
69
+ your body might otherwise get from cans of Coke, Filet Mignon, or Burger King
70
+ dollar menu burgers.
71
+ - source_sentence: What ingredients did the "Master Mix" consist of, and how was it
72
+ used in cooking?
73
+ sentences:
74
+ - 'Day 4- Morph yesterdays’ meal into a turkey pot pie. Thankfully, pie crust does
75
+ not require yeast….I think. Decide to skip the 99 cent pre-packaged spice mix,
76
+ and make my own taco seasoning?! I don’t have any maltodextrin, modified corn
77
+ starch, autolyzed yeast extract, or caramel color (sulfites) in my cupboard; so
78
+ hope it turns out okay. Cook up the remaining meat for turkey tacos, and freeze
79
+ half for later.
80
+
81
+ Day 5- Enjoy eating leftovers.'
82
+ - This is a fantastic article. I’m generally responsible for our family’s grocery
83
+ shopping since I do the dinner cooking. Our budget is $185 for a family of four
84
+ per two weeks (two boys are almost 4 and 16 months). Some two-weeks are tight,
85
+ but it’s been worthwhile for our bottom line to keep the budget set. We also
86
+ budget $20 for restaurants per 2 weeks. Yes, I know we can’t go out on that,
87
+ but if we save it up, we can go out once a month or so, or order pizza one week,
88
+ or some combination. I’m sure our budget will increase when the boys get older,
89
+ but by then, we should be bringing in more money, so we plan on being able to
90
+ absorb the increase. Eating healthy and abundantly doesn’t have to be expensive,
91
+ but it does require work and
92
+ - 'When I was growing up, my parents had 9 mouths to feed, and I remember my mom
93
+ making something called a “Master Mix”. It was basically a biscuit mix with the
94
+ butter mixed in already, which she kept in a 4-liter ice cream pail. She’d use
95
+ it to make pizza dough (among other things), and she’d top it with canned tomato
96
+ soup (still condensed), shredded carrots and broccoli and cheddar cheese. My
97
+ siblings and I have confessed an occasional desire to eat it again, although I
98
+ don’t know I’d ever try it out on my own kids.
99
+
100
+
101
+ Reply
102
+
103
+
104
+
105
+
106
+
107
+
108
+
109
+ Diane
110
+
111
+ April 9, 2020, 11:30 pm'
112
+ - source_sentence: What changes were made to the homeowners insurance policy to achieve
113
+ a $600 reduction?
114
+ sentences:
115
+ - 'And contrary to the 1990s low-fat-diet fad, the human body loves oil. It’s yummy,
116
+ clean-burning, good for a giant range of body functions, and it is satisfying
117
+ to eat too. I eat a fairly high-fat/low-carb diet these days, yet I’m leaner than
118
+ ever, because the oily food doesn’t cause spikes of fake appetite like bread does.
119
+ I’ve even been known to bring containers of herb-infused olive oil on road trips,
120
+ supplementing every meal with this supercharger nutrient, especially when it’s
121
+ time for an extreme hike or a high-energy work day.
122
+
123
+ See Article: The Amazing Waist-Slimming, Wallet-Fattening Nutrient'
124
+ - First thing- reduced insurance by $600 with increasing the homeowners deductible
125
+ from $500 to $1000, and switching providers. Be warned- was not informed about
126
+ the “unannounced 3rd party” that would be knocking on my door, as well as the
127
+ additional cost to reappraise some items- but still overall a reduction. Second-
128
+ dropped the gym membership ($131/month). Now don’t have to feel guilty about not
129
+ going. Enjoy the outdoors more anyhow. Third- scaled back on vacation. I’m actually
130
+ “on vacation” everyday, as even with all the expenses, we’re at FI.
131
+ - 'Reply
132
+
133
+
134
+
135
+
136
+
137
+ beachmama
138
+
139
+ January 31, 2017, 11:39 am
140
+
141
+
142
+
143
+ As a 25+ year veg, 12 year vegan, I’ve always supplemented b-12. After getting
144
+ blood work done I found I was critically low in D3. Turns out it’s not just because
145
+ I’m a woman over 50 (now 61) and through menopause, or that I’ve been veg for
146
+ over half my life, I’m fit and walk the beach 20 miles a week so getting sun isn’t
147
+ enough even in California. Apparently most people are D3 deficient but never know
148
+ until they become symptomatic or have a blood test. I recommend you get a simple
149
+ test to check on b-12 and d3 just to make sure you’re in good shape. And you are
150
+ SO right about protein . . . Westerners eat FAR too much protein ; )
151
+
152
+
153
+ Reply
154
+
155
+
156
+
157
+
158
+
159
+
160
+
161
+
162
+
163
+
164
+
165
+
166
+
167
+ riley
168
+
169
+ March 29, 2012, 7:07 am'
170
+ - source_sentence: What additional ingredients are suggested to increase protein content
171
+ in the context?
172
+ sentences:
173
+ - 'Those are just two simple recipes. The key to frugal eating is to have at least
174
+ ten good things you know how to make.
175
+
176
+ There are many chefs among the readers. Maybe we will get to hear some of their
177
+ best low-cost and easy-to-make creations in the comments section below?
178
+
179
+ Further Reading:
180
+
181
+ Grocery Shopping with your Middle Finger – an old MMM classic on this same topic,
182
+ where I first started thinking about cost per calorie. But there I  was dealing
183
+ with food stockups and sales rather than thinking of it on a per-meal or per-month
184
+ basis.
185
+
186
+ * According to the strong opinion of my own taste buds'
187
+ - 'Thanks for this timely article! In the midst of the March Challenge; was trying
188
+ to determine the next item to tackle- and groceries was it! How’d you know it
189
+ was $1000? Hmmm….psychic.
190
+
191
+ I FINALLY updated all the spending on Quicken last month to make myself stare
192
+ it in the face. No surprises; not ugly, but not very pretty either. The most valuable
193
+ outcome of the exercise was showing my husband that his hard efforts are appreciated,
194
+ and I’m stepping up!'
195
+ - cocoa and maybe some ground flax or whatever is lying around) for an extra 40
196
+ grams of protein.
197
+ pipeline_tag: sentence-similarity
198
+ library_name: sentence-transformers
199
+ metrics:
200
+ - cosine_accuracy@1
201
+ - cosine_accuracy@3
202
+ - cosine_accuracy@5
203
+ - cosine_accuracy@10
204
+ - cosine_precision@1
205
+ - cosine_precision@3
206
+ - cosine_precision@5
207
+ - cosine_precision@10
208
+ - cosine_recall@1
209
+ - cosine_recall@3
210
+ - cosine_recall@5
211
+ - cosine_recall@10
212
+ - cosine_ndcg@10
213
+ - cosine_mrr@10
214
+ - cosine_map@100
215
+ model-index:
216
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
217
+ results:
218
+ - task:
219
+ type: information-retrieval
220
+ name: Information Retrieval
221
+ dataset:
222
+ name: Unknown
223
+ type: unknown
224
+ metrics:
225
+ - type: cosine_accuracy@1
226
+ value: 0.7582417582417582
227
+ name: Cosine Accuracy@1
228
+ - type: cosine_accuracy@3
229
+ value: 0.9120879120879121
230
+ name: Cosine Accuracy@3
231
+ - type: cosine_accuracy@5
232
+ value: 0.945054945054945
233
+ name: Cosine Accuracy@5
234
+ - type: cosine_accuracy@10
235
+ value: 0.9725274725274725
236
+ name: Cosine Accuracy@10
237
+ - type: cosine_precision@1
238
+ value: 0.7582417582417582
239
+ name: Cosine Precision@1
240
+ - type: cosine_precision@3
241
+ value: 0.304029304029304
242
+ name: Cosine Precision@3
243
+ - type: cosine_precision@5
244
+ value: 0.18901098901098898
245
+ name: Cosine Precision@5
246
+ - type: cosine_precision@10
247
+ value: 0.09725274725274723
248
+ name: Cosine Precision@10
249
+ - type: cosine_recall@1
250
+ value: 0.7582417582417582
251
+ name: Cosine Recall@1
252
+ - type: cosine_recall@3
253
+ value: 0.9120879120879121
254
+ name: Cosine Recall@3
255
+ - type: cosine_recall@5
256
+ value: 0.945054945054945
257
+ name: Cosine Recall@5
258
+ - type: cosine_recall@10
259
+ value: 0.9725274725274725
260
+ name: Cosine Recall@10
261
+ - type: cosine_ndcg@10
262
+ value: 0.870936179086928
263
+ name: Cosine Ndcg@10
264
+ - type: cosine_mrr@10
265
+ value: 0.837580673294959
266
+ name: Cosine Mrr@10
267
+ - type: cosine_map@100
268
+ value: 0.8395868579934513
269
+ name: Cosine Map@100
270
+ - type: cosine_accuracy@1
271
+ value: 0.66
272
+ name: Cosine Accuracy@1
273
+ - type: cosine_accuracy@3
274
+ value: 0.76
275
+ name: Cosine Accuracy@3
276
+ - type: cosine_accuracy@5
277
+ value: 0.88
278
+ name: Cosine Accuracy@5
279
+ - type: cosine_accuracy@10
280
+ value: 0.9
281
+ name: Cosine Accuracy@10
282
+ - type: cosine_precision@1
283
+ value: 0.66
284
+ name: Cosine Precision@1
285
+ - type: cosine_precision@3
286
+ value: 0.2533333333333333
287
+ name: Cosine Precision@3
288
+ - type: cosine_precision@5
289
+ value: 0.17599999999999993
290
+ name: Cosine Precision@5
291
+ - type: cosine_precision@10
292
+ value: 0.08999999999999998
293
+ name: Cosine Precision@10
294
+ - type: cosine_recall@1
295
+ value: 0.66
296
+ name: Cosine Recall@1
297
+ - type: cosine_recall@3
298
+ value: 0.76
299
+ name: Cosine Recall@3
300
+ - type: cosine_recall@5
301
+ value: 0.88
302
+ name: Cosine Recall@5
303
+ - type: cosine_recall@10
304
+ value: 0.9
305
+ name: Cosine Recall@10
306
+ - type: cosine_ndcg@10
307
+ value: 0.7735850437783321
308
+ name: Cosine Ndcg@10
309
+ - type: cosine_mrr@10
310
+ value: 0.7328571428571431
311
+ name: Cosine Mrr@10
312
+ - type: cosine_map@100
313
+ value: 0.7377450230928493
314
+ name: Cosine Map@100
315
+ ---
316
+
317
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
318
+
319
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
320
+
321
+ ## Model Details
322
+
323
+ ### Model Description
324
+ - **Model Type:** Sentence Transformer
325
+ - **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b -->
326
+ - **Maximum Sequence Length:** 512 tokens
327
+ - **Output Dimensionality:** 1024 dimensions
328
+ - **Similarity Function:** Cosine Similarity
329
+ <!-- - **Training Dataset:** Unknown -->
330
+ <!-- - **Language:** Unknown -->
331
+ <!-- - **License:** Unknown -->
332
+
333
+ ### Model Sources
334
+
335
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
336
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
337
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
338
+
339
+ ### Full Model Architecture
340
+
341
+ ```
342
+ SentenceTransformer(
343
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
344
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
345
+ (2): Normalize()
346
+ )
347
+ ```
348
+
349
+ ## Usage
350
+
351
+ ### Direct Usage (Sentence Transformers)
352
+
353
+ First install the Sentence Transformers library:
354
+
355
+ ```bash
356
+ pip install -U sentence-transformers
357
+ ```
358
+
359
+ Then you can load this model and run inference.
360
+ ```python
361
+ from sentence_transformers import SentenceTransformer
362
+
363
+ # Download from the 🤗 Hub
364
+ model = SentenceTransformer("sentence_transformers_model_id")
365
+ # Run inference
366
+ sentences = [
367
+ 'What additional ingredients are suggested to increase protein content in the context?',
368
+ 'cocoa and maybe some ground flax or whatever is lying around) for an extra 40 grams of protein.',
369
+ 'Thanks for this timely article! In the midst of the March Challenge; was trying to determine the next item to tackle- and groceries was it! How’d you know it was $1000? Hmmm….psychic.\nI FINALLY updated all the spending on Quicken last month to make myself stare it in the face. No surprises; not ugly, but not very pretty either. The most valuable outcome of the exercise was showing my husband that his hard efforts are appreciated, and I’m stepping up!',
370
+ ]
371
+ embeddings = model.encode(sentences)
372
+ print(embeddings.shape)
373
+ # [3, 1024]
374
+
375
+ # Get the similarity scores for the embeddings
376
+ similarities = model.similarity(embeddings, embeddings)
377
+ print(similarities.shape)
378
+ # [3, 3]
379
+ ```
380
+
381
+ <!--
382
+ ### Direct Usage (Transformers)
383
+
384
+ <details><summary>Click to see the direct usage in Transformers</summary>
385
+
386
+ </details>
387
+ -->
388
+
389
+ <!--
390
+ ### Downstream Usage (Sentence Transformers)
391
+
392
+ You can finetune this model on your own dataset.
393
+
394
+ <details><summary>Click to expand</summary>
395
+
396
+ </details>
397
+ -->
398
+
399
+ <!--
400
+ ### Out-of-Scope Use
401
+
402
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
403
+ -->
404
+
405
+ ## Evaluation
406
+
407
+ ### Metrics
408
+
409
+ #### Information Retrieval
410
+
411
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
412
+
413
+ | Metric | Value |
414
+ |:--------------------|:-----------|
415
+ | cosine_accuracy@1 | 0.7582 |
416
+ | cosine_accuracy@3 | 0.9121 |
417
+ | cosine_accuracy@5 | 0.9451 |
418
+ | cosine_accuracy@10 | 0.9725 |
419
+ | cosine_precision@1 | 0.7582 |
420
+ | cosine_precision@3 | 0.304 |
421
+ | cosine_precision@5 | 0.189 |
422
+ | cosine_precision@10 | 0.0973 |
423
+ | cosine_recall@1 | 0.7582 |
424
+ | cosine_recall@3 | 0.9121 |
425
+ | cosine_recall@5 | 0.9451 |
426
+ | cosine_recall@10 | 0.9725 |
427
+ | **cosine_ndcg@10** | **0.8709** |
428
+ | cosine_mrr@10 | 0.8376 |
429
+ | cosine_map@100 | 0.8396 |
430
+
431
+ #### Information Retrieval
432
+
433
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
434
+
435
+ | Metric | Value |
436
+ |:--------------------|:-----------|
437
+ | cosine_accuracy@1 | 0.66 |
438
+ | cosine_accuracy@3 | 0.76 |
439
+ | cosine_accuracy@5 | 0.88 |
440
+ | cosine_accuracy@10 | 0.9 |
441
+ | cosine_precision@1 | 0.66 |
442
+ | cosine_precision@3 | 0.2533 |
443
+ | cosine_precision@5 | 0.176 |
444
+ | cosine_precision@10 | 0.09 |
445
+ | cosine_recall@1 | 0.66 |
446
+ | cosine_recall@3 | 0.76 |
447
+ | cosine_recall@5 | 0.88 |
448
+ | cosine_recall@10 | 0.9 |
449
+ | **cosine_ndcg@10** | **0.7736** |
450
+ | cosine_mrr@10 | 0.7329 |
451
+ | cosine_map@100 | 0.7377 |
452
+
453
+ <!--
454
+ ## Bias, Risks and Limitations
455
+
456
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
457
+ -->
458
+
459
+ <!--
460
+ ### Recommendations
461
+
462
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
463
+ -->
464
+
465
+ ## Training Details
466
+
467
+ ### Training Dataset
468
+
469
+ #### Unnamed Dataset
470
+
471
+ * Size: 100 training samples
472
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
473
+ * Approximate statistics based on the first 100 samples:
474
+ | | sentence_0 | sentence_1 |
475
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
476
+ | type | string | string |
477
+ | details | <ul><li>min: 8 tokens</li><li>mean: 16.78 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 132.1 tokens</li><li>max: 195 tokens</li></ul> |
478
+ * Samples:
479
+ | sentence_0 | sentence_1 |
480
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
481
+ | <code>What is the significance of the date Mar 29, 2012, in relation to grocery expenses?</code> | <code>Killing your $1000 Grocery Bill<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Home<br>Media<br>Contact<br><br><br><br> Email<br> RSS<br><br><br><br><br><br><br><br>Start Here<br>About<br>Random<br><br>MMM Recommends<br>Forum<br>MMM Classics<br><br><br>Mr. Money Mustache<br><br><br><br><br> View: Fancy Magazine | Classic Blog<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>Mar 29, 2012<br>428 comments<br>Killing your $1000 Grocery Bill</code> |
482
+ | <code>Wut do u think about spendin eighty dolars a week on food for a family?</code> | <code>“Eighty dollars a week on food for the three of you? That’s IT??”, said a friend, “We spend more than three times that amount!!”<br>“Whoa”, I replied, “I guess I’m not as spendy as I thought”.<br>Of course, the person telling me about her high food bill was more of a typical high-income spender in many ways. Her family also took out loans to buy new cars, had at least one $2500 carbon fiber road bike gleaming in the garage, and hired out the household chores to allow them to conveniently work a double-career-with-kids while still taking plenty of short vacations involving air travel. Looking back, I probably could have predicted a non-Mustachian grocery bill.</code> |
483
+ | <code>What factors contribute to the varying cost of living in the United States, and how can individuals make choices to manage their spending effectively?</code> | <code>But the experience still reminded me of the amazing variety of spending levels we all have available to us here in the United States. It is simultaneously one of the cheapest industrialized countries in the world to live in, and the most expensive. It all depends on the choices you make in your shopping, because everything in the world is available right here for your buying convenience.</code> |
484
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
485
+ ```json
486
+ {
487
+ "loss": "MultipleNegativesRankingLoss",
488
+ "matryoshka_dims": [
489
+ 768,
490
+ 512,
491
+ 256,
492
+ 128,
493
+ 64
494
+ ],
495
+ "matryoshka_weights": [
496
+ 1,
497
+ 1,
498
+ 1,
499
+ 1,
500
+ 1
501
+ ],
502
+ "n_dims_per_step": -1
503
+ }
504
+ ```
505
+
506
+ ### Training Hyperparameters
507
+ #### Non-Default Hyperparameters
508
+
509
+ - `eval_strategy`: steps
510
+ - `per_device_train_batch_size`: 10
511
+ - `per_device_eval_batch_size`: 10
512
+ - `num_train_epochs`: 5
513
+ - `multi_dataset_batch_sampler`: round_robin
514
+
515
+ #### All Hyperparameters
516
+ <details><summary>Click to expand</summary>
517
+
518
+ - `overwrite_output_dir`: False
519
+ - `do_predict`: False
520
+ - `eval_strategy`: steps
521
+ - `prediction_loss_only`: True
522
+ - `per_device_train_batch_size`: 10
523
+ - `per_device_eval_batch_size`: 10
524
+ - `per_gpu_train_batch_size`: None
525
+ - `per_gpu_eval_batch_size`: None
526
+ - `gradient_accumulation_steps`: 1
527
+ - `eval_accumulation_steps`: None
528
+ - `torch_empty_cache_steps`: None
529
+ - `learning_rate`: 5e-05
530
+ - `weight_decay`: 0.0
531
+ - `adam_beta1`: 0.9
532
+ - `adam_beta2`: 0.999
533
+ - `adam_epsilon`: 1e-08
534
+ - `max_grad_norm`: 1
535
+ - `num_train_epochs`: 5
536
+ - `max_steps`: -1
537
+ - `lr_scheduler_type`: linear
538
+ - `lr_scheduler_kwargs`: {}
539
+ - `warmup_ratio`: 0.0
540
+ - `warmup_steps`: 0
541
+ - `log_level`: passive
542
+ - `log_level_replica`: warning
543
+ - `log_on_each_node`: True
544
+ - `logging_nan_inf_filter`: True
545
+ - `save_safetensors`: True
546
+ - `save_on_each_node`: False
547
+ - `save_only_model`: False
548
+ - `restore_callback_states_from_checkpoint`: False
549
+ - `no_cuda`: False
550
+ - `use_cpu`: False
551
+ - `use_mps_device`: False
552
+ - `seed`: 42
553
+ - `data_seed`: None
554
+ - `jit_mode_eval`: False
555
+ - `use_ipex`: False
556
+ - `bf16`: False
557
+ - `fp16`: False
558
+ - `fp16_opt_level`: O1
559
+ - `half_precision_backend`: auto
560
+ - `bf16_full_eval`: False
561
+ - `fp16_full_eval`: False
562
+ - `tf32`: None
563
+ - `local_rank`: 0
564
+ - `ddp_backend`: None
565
+ - `tpu_num_cores`: None
566
+ - `tpu_metrics_debug`: False
567
+ - `debug`: []
568
+ - `dataloader_drop_last`: False
569
+ - `dataloader_num_workers`: 0
570
+ - `dataloader_prefetch_factor`: None
571
+ - `past_index`: -1
572
+ - `disable_tqdm`: False
573
+ - `remove_unused_columns`: True
574
+ - `label_names`: None
575
+ - `load_best_model_at_end`: False
576
+ - `ignore_data_skip`: False
577
+ - `fsdp`: []
578
+ - `fsdp_min_num_params`: 0
579
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
580
+ - `fsdp_transformer_layer_cls_to_wrap`: None
581
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
582
+ - `deepspeed`: None
583
+ - `label_smoothing_factor`: 0.0
584
+ - `optim`: adamw_torch
585
+ - `optim_args`: None
586
+ - `adafactor`: False
587
+ - `group_by_length`: False
588
+ - `length_column_name`: length
589
+ - `ddp_find_unused_parameters`: None
590
+ - `ddp_bucket_cap_mb`: None
591
+ - `ddp_broadcast_buffers`: False
592
+ - `dataloader_pin_memory`: True
593
+ - `dataloader_persistent_workers`: False
594
+ - `skip_memory_metrics`: True
595
+ - `use_legacy_prediction_loop`: False
596
+ - `push_to_hub`: False
597
+ - `resume_from_checkpoint`: None
598
+ - `hub_model_id`: None
599
+ - `hub_strategy`: every_save
600
+ - `hub_private_repo`: None
601
+ - `hub_always_push`: False
602
+ - `gradient_checkpointing`: False
603
+ - `gradient_checkpointing_kwargs`: None
604
+ - `include_inputs_for_metrics`: False
605
+ - `include_for_metrics`: []
606
+ - `eval_do_concat_batches`: True
607
+ - `fp16_backend`: auto
608
+ - `push_to_hub_model_id`: None
609
+ - `push_to_hub_organization`: None
610
+ - `mp_parameters`:
611
+ - `auto_find_batch_size`: False
612
+ - `full_determinism`: False
613
+ - `torchdynamo`: None
614
+ - `ray_scope`: last
615
+ - `ddp_timeout`: 1800
616
+ - `torch_compile`: False
617
+ - `torch_compile_backend`: None
618
+ - `torch_compile_mode`: None
619
+ - `dispatch_batches`: None
620
+ - `split_batches`: None
621
+ - `include_tokens_per_second`: False
622
+ - `include_num_input_tokens_seen`: False
623
+ - `neftune_noise_alpha`: None
624
+ - `optim_target_modules`: None
625
+ - `batch_eval_metrics`: False
626
+ - `eval_on_start`: False
627
+ - `use_liger_kernel`: False
628
+ - `eval_use_gather_object`: False
629
+ - `average_tokens_across_devices`: False
630
+ - `prompts`: None
631
+ - `batch_sampler`: batch_sampler
632
+ - `multi_dataset_batch_sampler`: round_robin
633
+
634
+ </details>
635
+
636
+ ### Training Logs
637
+ | Epoch | Step | cosine_ndcg@10 |
638
+ |:-----:|:----:|:--------------:|
639
+ | 1.0 | 10 | 0.8684 |
640
+ | 2.0 | 20 | 0.8698 |
641
+ | 3.0 | 30 | 0.8699 |
642
+ | 4.0 | 40 | 0.8706 |
643
+ | 5.0 | 50 | 0.8709 |
644
+ | 1.0 | 5 | 0.7269 |
645
+ | 2.0 | 10 | 0.7437 |
646
+ | 3.0 | 15 | 0.7539 |
647
+ | 4.0 | 20 | 0.7727 |
648
+ | 5.0 | 25 | 0.7736 |
649
+
650
+
651
+ ### Framework Versions
652
+ - Python: 3.13.1
653
+ - Sentence Transformers: 3.4.1
654
+ - Transformers: 4.48.3
655
+ - PyTorch: 2.6.0
656
+ - Accelerate: 1.3.0
657
+ - Datasets: 3.2.0
658
+ - Tokenizers: 0.21.0
659
+
660
+ ## Citation
661
+
662
+ ### BibTeX
663
+
664
+ #### Sentence Transformers
665
+ ```bibtex
666
+ @inproceedings{reimers-2019-sentence-bert,
667
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
668
+ author = "Reimers, Nils and Gurevych, Iryna",
669
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
670
+ month = "11",
671
+ year = "2019",
672
+ publisher = "Association for Computational Linguistics",
673
+ url = "https://arxiv.org/abs/1908.10084",
674
+ }
675
+ ```
676
+
677
+ #### MatryoshkaLoss
678
+ ```bibtex
679
+ @misc{kusupati2024matryoshka,
680
+ title={Matryoshka Representation Learning},
681
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
682
+ year={2024},
683
+ eprint={2205.13147},
684
+ archivePrefix={arXiv},
685
+ primaryClass={cs.LG}
686
+ }
687
+ ```
688
+
689
+ #### MultipleNegativesRankingLoss
690
+ ```bibtex
691
+ @misc{henderson2017efficient,
692
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
693
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
694
+ year={2017},
695
+ eprint={1705.00652},
696
+ archivePrefix={arXiv},
697
+ primaryClass={cs.CL}
698
+ }
699
+ ```
700
+
701
+ <!--
702
+ ## Glossary
703
+
704
+ *Clearly define terms in order to be accessible across audiences.*
705
+ -->
706
+
707
+ <!--
708
+ ## Model Card Authors
709
+
710
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
711
+ -->
712
+
713
+ <!--
714
+ ## Model Card Contact
715
+
716
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
717
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-l",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.48.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.6.0"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": "cosine"
12
+ }
eval/Information-Retrieval_evaluation_results.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ epoch,steps,cosine-Accuracy@1,cosine-Accuracy@3,cosine-Accuracy@5,cosine-Accuracy@10,cosine-Precision@1,cosine-Recall@1,cosine-Precision@3,cosine-Recall@3,cosine-Precision@5,cosine-Recall@5,cosine-Precision@10,cosine-Recall@10,cosine-MRR@10,cosine-NDCG@10,cosine-MAP@100
2
+ 1.0,5,0.62,0.7,0.82,0.86,0.62,0.62,0.2333333333333333,0.7,0.16399999999999998,0.82,0.08599999999999998,0.86,0.6848333333333333,0.7268567483013344,0.6914755538031401
3
+ 2.0,10,0.62,0.7,0.82,0.9,0.62,0.62,0.2333333333333333,0.7,0.16399999999999998,0.82,0.08999999999999998,0.9,0.695468253968254,0.7436776611952582,0.6994931457431458
4
+ 3.0,15,0.62,0.74,0.86,0.9,0.62,0.62,0.24666666666666665,0.74,0.17199999999999996,0.86,0.08999999999999998,0.9,0.7073333333333334,0.753897687309176,0.7117069900687548
5
+ 4.0,20,0.66,0.76,0.88,0.9,0.66,0.66,0.2533333333333333,0.76,0.17599999999999993,0.88,0.08999999999999998,0.9,0.7318571428571431,0.772708568761555,0.7366508683024919
6
+ 5.0,25,0.66,0.76,0.88,0.9,0.66,0.66,0.2533333333333333,0.76,0.17599999999999993,0.88,0.08999999999999998,0.9,0.7328571428571431,0.7735850437783321,0.7377450230928493
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ab3ec30f75d02e701900f9fe0718a8a4fd4a287f07ee8a91f15070cc79b4906
3
+ size 1336413848
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "[PAD]",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "[SEP]",
56
+ "stride": 0,
57
+ "strip_accents": null,
58
+ "tokenize_chinese_chars": true,
59
+ "tokenizer_class": "BertTokenizer",
60
+ "truncation_side": "right",
61
+ "truncation_strategy": "longest_first",
62
+ "unk_token": "[UNK]"
63
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff