dominguesm's picture
Update README.md
cc5e011
|
raw
history blame
4.86 kB
---
language:
- pt
license: cc-by-4.0
datasets:
- wiki_lingua
thumbnail: null
tags:
- named-entity-recognition
- Transformer
- pytorch
- bert
metrics:
- f1
- precision
- recall
model-index:
- name: rpunct-ptbr
results:
- task:
type: named-entity-recognition
dataset:
type: wiki_lingua
name: wiki_lingua
metrics:
- type: f1
value: 55.70
name: F1 Score
- type: precision
value: 57.72
name: Precision
- type: recall
value: 53.83
name: Recall
widget:
- text: "henrique foi no lago pescar com o pedro mais tarde foram para a casa do pedro fritar os peixes"
- text: "cinco trabalhadores da construção civil em capacetes e coletes amarelos estão ocupados no trabalho"
- text: "na quinta feira em visita a belo horizonte pedro sobrevoa a cidade atingida pelas chuvas"
- text: "coube ao representante de classe contar que na avaliação de língua portuguesa alguns alunos se mantiveram concentrados e outros dispersos"
---
# 🤗 bert-restore-punctuation-ptbr
* 🪄 [W&B Dashboard](https://wandb.ai/dominguesm/RestorePunctuationPTBR)
**Coming soon python package for simpler use.**
This is a [bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) model finetuned for punctuation restoration on [WikiLingua](https://github.com/esdurmus/Wikilingua).
This model is intended for direct use as a punctuation restoration model for the general Portuguese language. Alternatively, you can use this for further fine-tuning on domain-specific texts for punctuation restoration tasks.
Model restores the following punctuations -- **[! ? . , - : ; ' ]**
The model also restores the upper-casing of words.
-----------------------------------------------
## 🎯 Accuracy
| label | precision | recall | f1-score | support|
| ------------------------- | -------------|-------- | ----------|--------|
| **Upper - OU** | 0.89 | 0.91 | 0.90 | 69376
| **None - OO** | 0.99 | 0.98 | 0.98 | 857659
| **Full stop/period - .O** | 0.86 | 0.93 | 0.89 | 60410
| **Comma - ,O** | 0.85 | 0.83 | 0.84 | 48608
| **Upper + Comma - ,U** | 0.73 | 0.76 | 0.75 | 3521
| **Question - ?O** | 0.68 | 0.78 | 0.73 | 1168
| **Upper + period - .U** | 0.66 | 0.72 | 0.69 | 1884
| **Upper + colon - :U** | 0.59 | 0.63 | 0.61 | 352
| **Colon - :O** | 0.70 | 0.53 | 0.60 | 2420
| **Question Mark - ?U** | 0.50 | 0.56 | 0.53 | 36
| **Upper + Exclam. - !U** | 0.38 | 0.32 | 0.34 | 38
| **Exclamation Mark - !O** | 0.30 | 0.05 | 0.08 | 783
| **Semicolon - ;O** | 0.35 | 0.04 | 0.08 | 1557
| **Apostrophe - 'O** | 0.00 | 0.00 | 0.00 | 3
| **Hyphen - -O** | 0.00 | 0.00 | 0.00 | 3
| | | | |
| **accuracy** | | | 0.96 | 1047818
| **macro avg** | 0.57 | 0.54 | 0.54 | 1047818
| **weighted avg** | 0.96 | 0.96 | 0.96 | 1047818
-----------------------------------------------
## 🤷 Output
Example:
```json
[
{
"entity_group": "OU",
"score": 0.8026431202888489,
"word": "henrique",
"start": 0,
"end": 8
},
{
"entity_group": "OO",
"score": 0.9925149083137512,
"word": "foi no lago pescar com o",
"start": 9,
"end": 33
},
{
"entity_group": ".U",
"score": 0.8426014184951782,
"word": "pedro",
"start": 34,
"end": 39
},
{
"entity_group": "OU",
"score": 0.9519776105880737,
"word": "mais",
"start": 40,
"end": 44
},
{
"entity_group": ",O",
"score": 0.8551820516586304,
"word": "tarde",
"start": 45,
"end": 50
},
{
"entity_group": "OO",
"score": 0.9902807474136353,
"word": "foram para a casa do",
"start": 51,
"end": 71
},
{
"entity_group": "OU",
"score": 0.9227372407913208,
"word": "pedro",
"start": 72,
"end": 77
},
{
"entity_group": "OO",
"score": 0.9997054934501648,
"word": "fritar os",
"start": 78,
"end": 87
},
{
"entity_group": ".O",
"score": 0.9813661575317383,
"word": "peixes",
"start": 88,
"end": 94
}
]
```
This output refers to:
```
Henrique foi no lago pescar com o Pedro. Mais tarde, foram para a casa do Pedro fritar os peixes.
```
-----------------------------------------------
## 🤙 Contact
[Maicon Domingues]([email protected]) for questions, feedback and/or requests for similar models.