File size: 3,442 Bytes
06eaaaf
 
 
 
 
 
 
 
d2d5395
06eaaaf
 
d2d5395
06eaaaf
 
 
 
 
 
 
 
 
 
9b61c6a
 
06eaaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c582b39
06eaaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2d5395
06eaaaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171ad66
06eaaaf
 
 
 
 
 
 
 
 
 
 
 
d2d5395
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: mit
datasets:
- nyu-mll/multi_nli
- stanfordnlp/snli
language:
- en
metrics:
- accuracy
base_model:
- answerdotai/ModernBERT-base
- tasksource/ModernBERT-base-nli
pipeline_tag: text-classification
library_name: sentence-transformers
tags:
- cross-encoder
- modernbert
- mnli
- snli
---
# ModernBERT Cross-Encoder: Natural Language Inference (NLI)

This cross encoder performs sequence classification for contradiction/neutral/entailment labels. This has
drop-in compatibility with comparable sentence transformers cross encoders.

I trained this model by initializaing the ModernBERT-base weights from the brilliant `tasksource/ModernBERT-base-nli` 
zero-shot classification model. Then I trained it with a batch size of 64 using the `sentence-transformers` AllNLI
dataset.

---

## Features
- **High performing:** Achieves 90.34% and 90.25% on MNLI mismatched and SNLI test.
- **Efficient architecture:** Based on the ModernBERT-base design (149M parameters), offering faster inference speeds.
- **Extended context length:** Processes sequences up to 8192 tokens, great for LLM output evals.

---

## Performance

| Model                     | MNLI Mismatched   | SNLI Test    | Context Length |
|---------------------------|-------------------|--------------|----------------|
| `ModernCE-large-nli`      | 0.9202            | 0.9110       | 8192           |
| `ModernCE-base-nli`       | 0.9034            | 0.9025       | 8192           |
| `deberta-v3-large`        | 0.9049            | 0.9220       | 512            |
| `deberta-v3-base`         | 0.9004            | 0.9234       | 512            |


---

## Usage

To use ModernCE for NLI tasks, you can load the model with the Hugging Face `sentence-transformers` library:

```python
from sentence_transformers import CrossEncoder

# Load ModernCE model
model = CrossEncoder("dleemiller/ModernCE-base-nli")

scores = model.predict([
    ('A man is eating pizza', 'A man eats something'),
    ('A black race car starts up in front of a crowd of people.', 'A man is driving down a lonely road.')
])

# Convert scores to labels
label_mapping = ['contradiction', 'entailment', 'neutral']
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
# ['entailment', 'contradiction']
```

---

## Training Details

### Pretraining
We initialize the `tasksource/ModernBERT-base` weights.

Details:
- Batch size: 64
- Learning rate: 3e-4
- **Attention Dropout:** attention dropout 0.1

### Fine-Tuning
Fine-tuning was performed on the SBERT AllNLI.tsv.gz dataset.

### Validation Results
The model achieved the following test set performance after fine-tuning:
- **MNLI Unmatched:** 0.9034
- **SNLI:** 0.9025

---

## Model Card

- **Architecture:** ModernBERT-base
- **Fine-Tuning Data:** `sentence-transformers` - AllNLI.tsv.gz

---

## Thank You

Thanks to the AnswerAI team for providing the ModernBERT models, and the Sentence Transformers team for their leadership in transformer encoder models.
We also thank the tasksource team for their work on zeroshot encoder models.

---

## Citation

If you use this model in your research, please cite:

```bibtex
@misc{moderncenli2025,
  author = {Miller, D. Lee},
  title = {ModernCE NLI: An NLI cross encoder model},
  year = {2025},
  publisher = {Hugging Face Hub},
  url = {https://huggingface.co/dleemiller/ModernCE-base-nli},
}
```

---

## License

This model is licensed under the [MIT License](LICENSE).