dleemiller commited on
Commit
d2d5395
·
verified ·
1 Parent(s): 06eaaaf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -4
README.md CHANGED
@@ -6,10 +6,10 @@ datasets:
6
  language:
7
  - en
8
  metrics:
9
- - spearmanr
10
- - pearsonr
11
  base_model:
12
  - answerdotai/ModernBERT-base
 
13
  pipeline_tag: text-classification
14
  library_name: sentence-transformers
15
  tags:
@@ -20,7 +20,8 @@ tags:
20
  ---
21
  # ModernBERT Cross-Encoder: Natural Language Inference (NLI)
22
 
23
- This cross encoder performs sequence classification for contradiction/neutral/entailment labels.
 
24
 
25
  I trained this model by initializaing the ModernBERT-base weights from the brilliant `tasksource/ModernBERT-base-nli`
26
  zero-shot classification model. Then I trained it with a batch size of 64 using the `sentence-transformers` AllNLI
@@ -64,6 +65,7 @@ scores = model.predict([
64
  # Convert scores to labels
65
  label_mapping = ['contradiction', 'entailment', 'neutral']
66
  labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
 
67
  ```
68
 
69
  ---
@@ -120,4 +122,4 @@ If you use this model in your research, please cite:
120
 
121
  ## License
122
 
123
- This model is licensed under the [MIT License](LICENSE).
 
6
  language:
7
  - en
8
  metrics:
9
+ - accuracy
 
10
  base_model:
11
  - answerdotai/ModernBERT-base
12
+ - tasksource/ModernBERT-base-nli
13
  pipeline_tag: text-classification
14
  library_name: sentence-transformers
15
  tags:
 
20
  ---
21
  # ModernBERT Cross-Encoder: Natural Language Inference (NLI)
22
 
23
+ This cross encoder performs sequence classification for contradiction/neutral/entailment labels. This is
24
+ a drop-in for the comparable sentence transformers cross encoders.
25
 
26
  I trained this model by initializaing the ModernBERT-base weights from the brilliant `tasksource/ModernBERT-base-nli`
27
  zero-shot classification model. Then I trained it with a batch size of 64 using the `sentence-transformers` AllNLI
 
65
  # Convert scores to labels
66
  label_mapping = ['contradiction', 'entailment', 'neutral']
67
  labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
68
+ # ['entailment', 'contradiction']
69
  ```
70
 
71
  ---
 
122
 
123
  ## License
124
 
125
+ This model is licensed under the [MIT License](LICENSE).