Update README.md
Browse files
README.md
CHANGED
@@ -6,10 +6,10 @@ datasets:
|
|
6 |
language:
|
7 |
- en
|
8 |
metrics:
|
9 |
-
-
|
10 |
-
- pearsonr
|
11 |
base_model:
|
12 |
- answerdotai/ModernBERT-base
|
|
|
13 |
pipeline_tag: text-classification
|
14 |
library_name: sentence-transformers
|
15 |
tags:
|
@@ -20,7 +20,8 @@ tags:
|
|
20 |
---
|
21 |
# ModernBERT Cross-Encoder: Natural Language Inference (NLI)
|
22 |
|
23 |
-
This cross encoder performs sequence classification for contradiction/neutral/entailment labels.
|
|
|
24 |
|
25 |
I trained this model by initializaing the ModernBERT-base weights from the brilliant `tasksource/ModernBERT-base-nli`
|
26 |
zero-shot classification model. Then I trained it with a batch size of 64 using the `sentence-transformers` AllNLI
|
@@ -64,6 +65,7 @@ scores = model.predict([
|
|
64 |
# Convert scores to labels
|
65 |
label_mapping = ['contradiction', 'entailment', 'neutral']
|
66 |
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
|
|
|
67 |
```
|
68 |
|
69 |
---
|
@@ -120,4 +122,4 @@ If you use this model in your research, please cite:
|
|
120 |
|
121 |
## License
|
122 |
|
123 |
-
This model is licensed under the [MIT License](LICENSE).
|
|
|
6 |
language:
|
7 |
- en
|
8 |
metrics:
|
9 |
+
- accuracy
|
|
|
10 |
base_model:
|
11 |
- answerdotai/ModernBERT-base
|
12 |
+
- tasksource/ModernBERT-base-nli
|
13 |
pipeline_tag: text-classification
|
14 |
library_name: sentence-transformers
|
15 |
tags:
|
|
|
20 |
---
|
21 |
# ModernBERT Cross-Encoder: Natural Language Inference (NLI)
|
22 |
|
23 |
+
This cross encoder performs sequence classification for contradiction/neutral/entailment labels. This is
|
24 |
+
a drop-in for the comparable sentence transformers cross encoders.
|
25 |
|
26 |
I trained this model by initializaing the ModernBERT-base weights from the brilliant `tasksource/ModernBERT-base-nli`
|
27 |
zero-shot classification model. Then I trained it with a batch size of 64 using the `sentence-transformers` AllNLI
|
|
|
65 |
# Convert scores to labels
|
66 |
label_mapping = ['contradiction', 'entailment', 'neutral']
|
67 |
labels = [label_mapping[score_max] for score_max in scores.argmax(axis=1)]
|
68 |
+
# ['entailment', 'contradiction']
|
69 |
```
|
70 |
|
71 |
---
|
|
|
122 |
|
123 |
## License
|
124 |
|
125 |
+
This model is licensed under the [MIT License](LICENSE).
|