hing-roberta-CM-run-1

This model is a fine-tuned version of l3cube-pune/hing-roberta on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4241
  • Accuracy: 0.7787
  • Precision: 0.7367
  • Recall: 0.7378
  • F1: 0.7357

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.8552 1.0 497 0.6797 0.7103 0.6657 0.6872 0.6648
0.5998 2.0 994 0.6946 0.7304 0.6870 0.7108 0.6933
0.4146 3.0 1491 0.9422 0.7465 0.7215 0.6734 0.6887
0.2592 4.0 1988 1.3122 0.7626 0.7240 0.7130 0.7126
0.1644 5.0 2485 1.7526 0.7344 0.6856 0.6901 0.6875
0.1022 6.0 2982 1.9479 0.7746 0.7331 0.7317 0.7316
0.0764 7.0 3479 2.0772 0.7626 0.7190 0.7214 0.7202
0.0468 8.0 3976 2.2799 0.7626 0.7184 0.7044 0.7099
0.0472 9.0 4473 2.2257 0.7586 0.7103 0.7176 0.7135
0.0306 10.0 4970 2.3307 0.7505 0.7068 0.7081 0.7074
0.0351 11.0 5467 2.2555 0.7666 0.7198 0.7254 0.7219
0.0328 12.0 5964 2.4425 0.7626 0.7258 0.7124 0.7179
0.0225 13.0 6461 2.5229 0.7666 0.7237 0.7138 0.7179
0.0232 14.0 6958 2.5717 0.7646 0.7202 0.7115 0.7144
0.0191 15.0 7455 2.4027 0.7606 0.7110 0.7202 0.7152
0.0175 16.0 7952 2.3918 0.7666 0.7216 0.7241 0.7226
0.0087 17.0 8449 2.4176 0.7767 0.7347 0.7365 0.7345
0.0077 18.0 8946 2.4231 0.7686 0.7201 0.7265 0.7230
0.0095 19.0 9443 2.4162 0.7827 0.7392 0.7436 0.7406
0.0063 20.0 9940 2.4241 0.7787 0.7367 0.7378 0.7357

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.10.1+cu111
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for dipteshkanojia/hing-roberta-CM-run-1

Finetuned
(9)
this model