roberta-finetuned-wines
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.4708
- Accuracy: 0.7826
- F1: 0.6998
- Precision: 0.8330
- Recall: 0.7875
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
7.8604 | 1.0 | 405 | 7.8021 | 0.0046 | 0.0001 | 0.9916 | 0.0025 |
7.7552 | 2.0 | 810 | 7.6534 | 0.0084 | 0.0005 | 0.9847 | 0.0053 |
7.6208 | 3.0 | 1215 | 7.5104 | 0.0096 | 0.0004 | 0.9728 | 0.0075 |
7.4786 | 4.0 | 1620 | 7.3656 | 0.0192 | 0.0027 | 0.9642 | 0.0137 |
7.3399 | 5.0 | 2025 | 7.2197 | 0.0235 | 0.0032 | 0.9571 | 0.0175 |
7.2026 | 6.0 | 2430 | 7.0715 | 0.0260 | 0.0044 | 0.9587 | 0.0186 |
7.0616 | 7.0 | 2835 | 6.9360 | 0.0322 | 0.0082 | 0.9483 | 0.0232 |
6.9247 | 8.0 | 3240 | 6.8037 | 0.0328 | 0.0089 | 0.9517 | 0.0231 |
6.7897 | 9.0 | 3645 | 6.6682 | 0.0455 | 0.0129 | 0.9493 | 0.0311 |
6.6593 | 10.0 | 4050 | 6.5377 | 0.0473 | 0.0137 | 0.9381 | 0.0343 |
6.5321 | 11.0 | 4455 | 6.4207 | 0.0517 | 0.0153 | 0.9425 | 0.0340 |
6.4102 | 12.0 | 4860 | 6.2955 | 0.0569 | 0.0205 | 0.9339 | 0.0414 |
6.291 | 13.0 | 5265 | 6.1805 | 0.0656 | 0.0270 | 0.9252 | 0.0498 |
6.1789 | 14.0 | 5670 | 6.0748 | 0.0755 | 0.0311 | 0.9258 | 0.0577 |
6.0653 | 15.0 | 6075 | 5.9658 | 0.0795 | 0.0313 | 0.9216 | 0.0597 |
5.9595 | 16.0 | 6480 | 5.8629 | 0.0885 | 0.0388 | 0.9137 | 0.0697 |
5.8568 | 17.0 | 6885 | 5.7689 | 0.0928 | 0.0396 | 0.9113 | 0.0706 |
5.7597 | 18.0 | 7290 | 5.6795 | 0.0965 | 0.0410 | 0.9092 | 0.0731 |
5.6659 | 19.0 | 7695 | 5.5862 | 0.1049 | 0.0461 | 0.9029 | 0.0802 |
5.5714 | 20.0 | 8100 | 5.4965 | 0.1135 | 0.0506 | 0.8985 | 0.0877 |
5.484 | 21.0 | 8505 | 5.4127 | 0.1166 | 0.0503 | 0.8954 | 0.0901 |
5.3961 | 22.0 | 8910 | 5.3354 | 0.1250 | 0.0579 | 0.8887 | 0.0987 |
5.3137 | 23.0 | 9315 | 5.2551 | 0.1259 | 0.0571 | 0.8888 | 0.0997 |
5.2296 | 24.0 | 9720 | 5.1792 | 0.1349 | 0.0645 | 0.8856 | 0.1067 |
5.1527 | 25.0 | 10125 | 5.1053 | 0.1457 | 0.0742 | 0.8755 | 0.1203 |
5.0725 | 26.0 | 10530 | 5.0318 | 0.1519 | 0.0750 | 0.8735 | 0.1246 |
4.9995 | 27.0 | 10935 | 4.9612 | 0.1581 | 0.0829 | 0.8711 | 0.1322 |
4.9284 | 28.0 | 11340 | 4.8977 | 0.1661 | 0.0857 | 0.8721 | 0.1347 |
4.8567 | 29.0 | 11745 | 4.8218 | 0.1735 | 0.0937 | 0.8683 | 0.1418 |
4.783 | 30.0 | 12150 | 4.7584 | 0.1819 | 0.0971 | 0.8637 | 0.1510 |
4.7193 | 31.0 | 12555 | 4.6947 | 0.1896 | 0.1045 | 0.8617 | 0.1586 |
4.6478 | 32.0 | 12960 | 4.6337 | 0.2020 | 0.1148 | 0.8592 | 0.1727 |
4.5815 | 33.0 | 13365 | 4.5725 | 0.2051 | 0.1148 | 0.8541 | 0.1743 |
4.523 | 34.0 | 13770 | 4.5180 | 0.2106 | 0.1214 | 0.8551 | 0.1838 |
4.4537 | 35.0 | 14175 | 4.4538 | 0.2215 | 0.1263 | 0.8512 | 0.1897 |
4.3924 | 36.0 | 14580 | 4.4020 | 0.2230 | 0.1297 | 0.8494 | 0.1935 |
4.3313 | 37.0 | 14985 | 4.3394 | 0.2363 | 0.1408 | 0.8389 | 0.2107 |
4.2718 | 38.0 | 15390 | 4.2840 | 0.2484 | 0.1537 | 0.8427 | 0.2200 |
4.2099 | 39.0 | 15795 | 4.2260 | 0.2614 | 0.1625 | 0.8352 | 0.2358 |
4.1507 | 40.0 | 16200 | 4.1730 | 0.2645 | 0.1676 | 0.8324 | 0.2399 |
4.0893 | 41.0 | 16605 | 4.1179 | 0.2827 | 0.1817 | 0.8301 | 0.2552 |
4.0296 | 42.0 | 17010 | 4.0695 | 0.2836 | 0.1852 | 0.8292 | 0.2610 |
3.9781 | 43.0 | 17415 | 4.0107 | 0.3053 | 0.2016 | 0.8286 | 0.2768 |
3.9233 | 44.0 | 17820 | 3.9595 | 0.3071 | 0.2072 | 0.8179 | 0.2846 |
3.8604 | 45.0 | 18225 | 3.9078 | 0.3195 | 0.2186 | 0.8172 | 0.2980 |
3.8038 | 46.0 | 18630 | 3.8599 | 0.3341 | 0.2277 | 0.8140 | 0.3101 |
3.7492 | 47.0 | 19035 | 3.8101 | 0.3387 | 0.2347 | 0.8154 | 0.3158 |
3.6949 | 48.0 | 19440 | 3.7631 | 0.3542 | 0.2510 | 0.8153 | 0.3319 |
3.6347 | 49.0 | 19845 | 3.7169 | 0.3610 | 0.2535 | 0.8138 | 0.3365 |
3.5873 | 50.0 | 20250 | 3.6666 | 0.3721 | 0.2624 | 0.8083 | 0.3478 |
3.5366 | 51.0 | 20655 | 3.6167 | 0.3848 | 0.2773 | 0.8078 | 0.3634 |
3.4761 | 52.0 | 21060 | 3.5746 | 0.3885 | 0.2799 | 0.8113 | 0.3638 |
3.4254 | 53.0 | 21465 | 3.5332 | 0.3934 | 0.2839 | 0.8057 | 0.3692 |
3.3765 | 54.0 | 21870 | 3.4823 | 0.4105 | 0.3037 | 0.8037 | 0.3910 |
3.3245 | 55.0 | 22275 | 3.4392 | 0.4253 | 0.3176 | 0.8054 | 0.4059 |
3.2754 | 56.0 | 22680 | 3.3974 | 0.4337 | 0.3239 | 0.8034 | 0.4124 |
3.2224 | 57.0 | 23085 | 3.3565 | 0.4408 | 0.3293 | 0.7991 | 0.4177 |
3.1768 | 58.0 | 23490 | 3.3120 | 0.4550 | 0.3429 | 0.7966 | 0.4339 |
3.1202 | 59.0 | 23895 | 3.2699 | 0.4596 | 0.3497 | 0.7995 | 0.4376 |
3.0742 | 60.0 | 24300 | 3.2277 | 0.4692 | 0.3574 | 0.7977 | 0.4497 |
3.0225 | 61.0 | 24705 | 3.1866 | 0.4751 | 0.3627 | 0.7967 | 0.4543 |
2.9801 | 62.0 | 25110 | 3.1455 | 0.4872 | 0.3748 | 0.7943 | 0.4683 |
2.9287 | 63.0 | 25515 | 3.1078 | 0.5014 | 0.3916 | 0.7893 | 0.4848 |
2.8847 | 64.0 | 25920 | 3.0645 | 0.5032 | 0.3909 | 0.7918 | 0.4833 |
2.8325 | 65.0 | 26325 | 3.0316 | 0.5097 | 0.3963 | 0.7925 | 0.4908 |
2.7866 | 66.0 | 26730 | 2.9929 | 0.5280 | 0.4163 | 0.7906 | 0.5092 |
2.7484 | 67.0 | 27135 | 2.9514 | 0.5410 | 0.4302 | 0.7948 | 0.5228 |
2.6964 | 68.0 | 27540 | 2.9139 | 0.5444 | 0.4320 | 0.7966 | 0.5251 |
2.653 | 69.0 | 27945 | 2.8757 | 0.5583 | 0.4459 | 0.7941 | 0.5417 |
2.6088 | 70.0 | 28350 | 2.8426 | 0.5605 | 0.4464 | 0.7953 | 0.5415 |
2.564 | 71.0 | 28755 | 2.8091 | 0.5725 | 0.4575 | 0.7981 | 0.5481 |
2.5236 | 72.0 | 29160 | 2.7726 | 0.5806 | 0.4725 | 0.7971 | 0.5623 |
2.4776 | 73.0 | 29565 | 2.7376 | 0.5849 | 0.4735 | 0.7967 | 0.5652 |
2.4381 | 74.0 | 29970 | 2.7033 | 0.5939 | 0.4833 | 0.7983 | 0.5764 |
2.3904 | 75.0 | 30375 | 2.6753 | 0.6053 | 0.4958 | 0.7992 | 0.5886 |
2.3502 | 76.0 | 30780 | 2.6403 | 0.6121 | 0.5020 | 0.8015 | 0.5939 |
2.3087 | 77.0 | 31185 | 2.6105 | 0.6174 | 0.5064 | 0.8044 | 0.6001 |
2.2701 | 78.0 | 31590 | 2.5760 | 0.6294 | 0.5233 | 0.8102 | 0.6120 |
2.2276 | 79.0 | 31995 | 2.5457 | 0.6397 | 0.5358 | 0.8074 | 0.6253 |
2.1939 | 80.0 | 32400 | 2.5160 | 0.6443 | 0.5394 | 0.8074 | 0.6302 |
2.1468 | 81.0 | 32805 | 2.4892 | 0.6452 | 0.5398 | 0.8070 | 0.6298 |
2.1113 | 82.0 | 33210 | 2.4566 | 0.6508 | 0.5456 | 0.8080 | 0.6381 |
2.0773 | 83.0 | 33615 | 2.4327 | 0.6539 | 0.5498 | 0.8109 | 0.6382 |
2.0369 | 84.0 | 34020 | 2.4050 | 0.6641 | 0.5625 | 0.8124 | 0.6513 |
1.9986 | 85.0 | 34425 | 2.3793 | 0.6666 | 0.5628 | 0.8116 | 0.6521 |
1.9656 | 86.0 | 34830 | 2.3470 | 0.6709 | 0.5689 | 0.8106 | 0.6579 |
1.9329 | 87.0 | 35235 | 2.3257 | 0.6740 | 0.5718 | 0.8107 | 0.6623 |
1.8962 | 88.0 | 35640 | 2.2960 | 0.6823 | 0.5810 | 0.8145 | 0.6697 |
1.8577 | 89.0 | 36045 | 2.2736 | 0.6898 | 0.5873 | 0.8150 | 0.6791 |
1.8192 | 90.0 | 36450 | 2.2484 | 0.6910 | 0.5887 | 0.8149 | 0.6808 |
1.7895 | 91.0 | 36855 | 2.2235 | 0.6966 | 0.5961 | 0.8153 | 0.6873 |
1.7584 | 92.0 | 37260 | 2.2028 | 0.6944 | 0.5986 | 0.8180 | 0.6850 |
1.7229 | 93.0 | 37665 | 2.1772 | 0.7031 | 0.6063 | 0.8165 | 0.6949 |
1.6962 | 94.0 | 38070 | 2.1558 | 0.7065 | 0.6074 | 0.8195 | 0.6969 |
1.6626 | 95.0 | 38475 | 2.1385 | 0.7077 | 0.6104 | 0.8230 | 0.7005 |
1.6304 | 96.0 | 38880 | 2.1168 | 0.7148 | 0.6172 | 0.8210 | 0.7075 |
1.597 | 97.0 | 39285 | 2.0962 | 0.7176 | 0.6237 | 0.8235 | 0.7114 |
1.5736 | 98.0 | 39690 | 2.0748 | 0.7210 | 0.6266 | 0.8215 | 0.7160 |
1.5383 | 99.0 | 40095 | 2.0569 | 0.7250 | 0.6321 | 0.8251 | 0.7197 |
1.5096 | 100.0 | 40500 | 2.0302 | 0.7294 | 0.6350 | 0.8228 | 0.7243 |
1.4847 | 101.0 | 40905 | 2.0159 | 0.7315 | 0.6380 | 0.8261 | 0.7244 |
1.4569 | 102.0 | 41310 | 2.0005 | 0.7318 | 0.6419 | 0.8261 | 0.7274 |
1.426 | 103.0 | 41715 | 1.9833 | 0.7340 | 0.6448 | 0.8291 | 0.7291 |
1.401 | 104.0 | 42120 | 1.9616 | 0.7408 | 0.6512 | 0.8283 | 0.7369 |
1.3718 | 105.0 | 42525 | 1.9425 | 0.7427 | 0.6502 | 0.8281 | 0.7391 |
1.3496 | 106.0 | 42930 | 1.9275 | 0.7442 | 0.6533 | 0.8273 | 0.7411 |
1.3248 | 107.0 | 43335 | 1.9164 | 0.7420 | 0.6533 | 0.8296 | 0.7389 |
1.2936 | 108.0 | 43740 | 1.8988 | 0.7485 | 0.6554 | 0.8257 | 0.7461 |
1.2709 | 109.0 | 44145 | 1.8812 | 0.7488 | 0.6614 | 0.8268 | 0.7472 |
1.2543 | 110.0 | 44550 | 1.8682 | 0.7504 | 0.6617 | 0.8276 | 0.7499 |
1.2273 | 111.0 | 44955 | 1.8524 | 0.7532 | 0.6612 | 0.8276 | 0.7524 |
1.2041 | 112.0 | 45360 | 1.8357 | 0.7535 | 0.6641 | 0.8307 | 0.7512 |
1.1821 | 113.0 | 45765 | 1.8244 | 0.7563 | 0.6678 | 0.8299 | 0.7546 |
1.1605 | 114.0 | 46170 | 1.8137 | 0.7550 | 0.6658 | 0.8269 | 0.7533 |
1.138 | 115.0 | 46575 | 1.7954 | 0.7581 | 0.6714 | 0.8317 | 0.7563 |
1.1139 | 116.0 | 46980 | 1.7860 | 0.7590 | 0.6711 | 0.8292 | 0.7586 |
1.095 | 117.0 | 47385 | 1.7778 | 0.7609 | 0.6716 | 0.8295 | 0.7593 |
1.0755 | 118.0 | 47790 | 1.7636 | 0.7615 | 0.6726 | 0.8320 | 0.7597 |
1.0568 | 119.0 | 48195 | 1.7544 | 0.7615 | 0.6715 | 0.8304 | 0.7594 |
1.0381 | 120.0 | 48600 | 1.7403 | 0.7624 | 0.6730 | 0.8293 | 0.7606 |
1.0219 | 121.0 | 49005 | 1.7280 | 0.7621 | 0.6725 | 0.8293 | 0.7615 |
1.0027 | 122.0 | 49410 | 1.7173 | 0.7637 | 0.6751 | 0.8309 | 0.7619 |
0.982 | 123.0 | 49815 | 1.7084 | 0.7631 | 0.6738 | 0.8286 | 0.7625 |
0.9653 | 124.0 | 50220 | 1.7028 | 0.7637 | 0.6766 | 0.8305 | 0.7643 |
0.9514 | 125.0 | 50625 | 1.6931 | 0.7637 | 0.6747 | 0.8267 | 0.7638 |
0.9339 | 126.0 | 51030 | 1.6833 | 0.7649 | 0.6759 | 0.8266 | 0.7652 |
0.9179 | 127.0 | 51435 | 1.6746 | 0.7655 | 0.6780 | 0.8293 | 0.7652 |
0.9026 | 128.0 | 51840 | 1.6650 | 0.7643 | 0.6767 | 0.8264 | 0.7650 |
0.8864 | 129.0 | 52245 | 1.6575 | 0.7652 | 0.6764 | 0.8286 | 0.7653 |
0.8695 | 130.0 | 52650 | 1.6465 | 0.7674 | 0.6781 | 0.8250 | 0.7671 |
0.8548 | 131.0 | 53055 | 1.6428 | 0.7674 | 0.6799 | 0.8277 | 0.7692 |
0.8407 | 132.0 | 53460 | 1.6348 | 0.7662 | 0.6791 | 0.8269 | 0.7681 |
0.8302 | 133.0 | 53865 | 1.6304 | 0.7665 | 0.6776 | 0.8260 | 0.7678 |
0.816 | 134.0 | 54270 | 1.6201 | 0.7696 | 0.6812 | 0.8271 | 0.7718 |
0.8042 | 135.0 | 54675 | 1.6137 | 0.7699 | 0.6841 | 0.8280 | 0.7725 |
0.7889 | 136.0 | 55080 | 1.6066 | 0.7714 | 0.6839 | 0.8275 | 0.7753 |
0.7737 | 137.0 | 55485 | 1.6014 | 0.7736 | 0.6907 | 0.8285 | 0.7768 |
0.7639 | 138.0 | 55890 | 1.5958 | 0.7708 | 0.6879 | 0.8285 | 0.7742 |
0.7531 | 139.0 | 56295 | 1.5896 | 0.7720 | 0.6875 | 0.8302 | 0.7751 |
0.7447 | 140.0 | 56700 | 1.5849 | 0.7761 | 0.6931 | 0.8301 | 0.7794 |
0.7321 | 141.0 | 57105 | 1.5799 | 0.7717 | 0.6870 | 0.8301 | 0.7755 |
0.7172 | 142.0 | 57510 | 1.5744 | 0.7717 | 0.6865 | 0.8288 | 0.7753 |
0.7069 | 143.0 | 57915 | 1.5718 | 0.7736 | 0.6914 | 0.8315 | 0.7776 |
0.7006 | 144.0 | 58320 | 1.5667 | 0.7754 | 0.6889 | 0.8274 | 0.7805 |
0.6878 | 145.0 | 58725 | 1.5621 | 0.7758 | 0.6909 | 0.8285 | 0.7797 |
0.6781 | 146.0 | 59130 | 1.5597 | 0.7770 | 0.6917 | 0.8304 | 0.7807 |
0.6685 | 147.0 | 59535 | 1.5567 | 0.7751 | 0.6914 | 0.8280 | 0.7807 |
0.659 | 148.0 | 59940 | 1.5520 | 0.7758 | 0.6908 | 0.8300 | 0.7809 |
0.6563 | 149.0 | 60345 | 1.5482 | 0.7767 | 0.6912 | 0.8304 | 0.7815 |
0.6433 | 150.0 | 60750 | 1.5440 | 0.7745 | 0.6894 | 0.8287 | 0.7803 |
0.6343 | 151.0 | 61155 | 1.5383 | 0.7764 | 0.6907 | 0.8307 | 0.7804 |
0.6251 | 152.0 | 61560 | 1.5365 | 0.7773 | 0.6920 | 0.8310 | 0.7817 |
0.6171 | 153.0 | 61965 | 1.5329 | 0.7776 | 0.6934 | 0.8313 | 0.7823 |
0.6112 | 154.0 | 62370 | 1.5278 | 0.7792 | 0.6929 | 0.8304 | 0.7832 |
0.6017 | 155.0 | 62775 | 1.5239 | 0.7795 | 0.6941 | 0.8308 | 0.7843 |
0.5956 | 156.0 | 63180 | 1.5230 | 0.7795 | 0.6955 | 0.8313 | 0.7852 |
0.5865 | 157.0 | 63585 | 1.5181 | 0.7795 | 0.6968 | 0.8318 | 0.7855 |
0.5826 | 158.0 | 63990 | 1.5172 | 0.7779 | 0.6951 | 0.8314 | 0.7840 |
0.5755 | 159.0 | 64395 | 1.5160 | 0.7779 | 0.6956 | 0.8315 | 0.7828 |
0.5672 | 160.0 | 64800 | 1.5119 | 0.7782 | 0.6927 | 0.8294 | 0.7827 |
0.5625 | 161.0 | 65205 | 1.5083 | 0.7798 | 0.6962 | 0.8314 | 0.7843 |
0.5587 | 162.0 | 65610 | 1.5078 | 0.7792 | 0.6954 | 0.8288 | 0.7860 |
0.5496 | 163.0 | 66015 | 1.5044 | 0.7792 | 0.6952 | 0.8315 | 0.7846 |
0.5456 | 164.0 | 66420 | 1.5009 | 0.7801 | 0.6965 | 0.8313 | 0.7853 |
0.5368 | 165.0 | 66825 | 1.5002 | 0.7801 | 0.6967 | 0.8316 | 0.7845 |
0.5374 | 166.0 | 67230 | 1.4984 | 0.7801 | 0.6965 | 0.8312 | 0.7848 |
0.5277 | 167.0 | 67635 | 1.4951 | 0.7822 | 0.7000 | 0.8342 | 0.7868 |
0.5273 | 168.0 | 68040 | 1.4969 | 0.7813 | 0.6992 | 0.8317 | 0.7860 |
0.5184 | 169.0 | 68445 | 1.4934 | 0.7813 | 0.6977 | 0.8319 | 0.7864 |
0.5143 | 170.0 | 68850 | 1.4894 | 0.7819 | 0.6988 | 0.8324 | 0.7876 |
0.5116 | 171.0 | 69255 | 1.4901 | 0.7829 | 0.7000 | 0.8346 | 0.7879 |
0.5059 | 172.0 | 69660 | 1.4893 | 0.7822 | 0.7003 | 0.8331 | 0.7880 |
0.5043 | 173.0 | 70065 | 1.4877 | 0.7816 | 0.6974 | 0.8312 | 0.7870 |
0.4958 | 174.0 | 70470 | 1.4858 | 0.7807 | 0.6968 | 0.8317 | 0.7865 |
0.4936 | 175.0 | 70875 | 1.4854 | 0.7826 | 0.6991 | 0.8324 | 0.7870 |
0.4923 | 176.0 | 71280 | 1.4841 | 0.7810 | 0.6977 | 0.8322 | 0.7862 |
0.4866 | 177.0 | 71685 | 1.4830 | 0.7807 | 0.7004 | 0.8339 | 0.7861 |
0.4851 | 178.0 | 72090 | 1.4826 | 0.7798 | 0.6974 | 0.8319 | 0.7854 |
0.4795 | 179.0 | 72495 | 1.4816 | 0.7816 | 0.6985 | 0.8317 | 0.7870 |
0.4772 | 180.0 | 72900 | 1.4789 | 0.7798 | 0.6985 | 0.8327 | 0.7855 |
0.4765 | 181.0 | 73305 | 1.4805 | 0.7810 | 0.6975 | 0.8320 | 0.7858 |
0.4734 | 182.0 | 73710 | 1.4777 | 0.7822 | 0.6997 | 0.8337 | 0.7867 |
0.4702 | 183.0 | 74115 | 1.4776 | 0.7822 | 0.6988 | 0.8316 | 0.7879 |
0.4717 | 184.0 | 74520 | 1.4765 | 0.7822 | 0.6986 | 0.8332 | 0.7875 |
0.4658 | 185.0 | 74925 | 1.4764 | 0.7816 | 0.6982 | 0.8329 | 0.7866 |
0.4642 | 186.0 | 75330 | 1.4758 | 0.7826 | 0.6992 | 0.8331 | 0.7877 |
0.462 | 187.0 | 75735 | 1.4746 | 0.7829 | 0.7001 | 0.8322 | 0.7888 |
0.4599 | 188.0 | 76140 | 1.4740 | 0.7822 | 0.6986 | 0.8308 | 0.7881 |
0.4586 | 189.0 | 76545 | 1.4744 | 0.7832 | 0.7002 | 0.8324 | 0.7887 |
0.4554 | 190.0 | 76950 | 1.4738 | 0.7826 | 0.7001 | 0.8328 | 0.7882 |
0.4539 | 191.0 | 77355 | 1.4731 | 0.7822 | 0.6988 | 0.8303 | 0.7881 |
0.4525 | 192.0 | 77760 | 1.4724 | 0.7829 | 0.7010 | 0.8328 | 0.7879 |
0.4483 | 193.0 | 78165 | 1.4722 | 0.7829 | 0.6989 | 0.8315 | 0.7888 |
0.4469 | 194.0 | 78570 | 1.4715 | 0.7829 | 0.6995 | 0.8313 | 0.7885 |
0.447 | 195.0 | 78975 | 1.4716 | 0.7835 | 0.6997 | 0.8322 | 0.7886 |
0.4484 | 196.0 | 79380 | 1.4712 | 0.7826 | 0.6994 | 0.8324 | 0.7878 |
0.4459 | 197.0 | 79785 | 1.4707 | 0.7832 | 0.7003 | 0.8329 | 0.7882 |
0.4455 | 198.0 | 80190 | 1.4710 | 0.7826 | 0.7001 | 0.8333 | 0.7878 |
0.4457 | 199.0 | 80595 | 1.4709 | 0.7829 | 0.7000 | 0.8326 | 0.7882 |
0.4422 | 200.0 | 81000 | 1.4708 | 0.7826 | 0.6998 | 0.8330 | 0.7875 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for dimitarpg13/roberta-finetuned-wines-resampled-val-ds
Base model
FacebookAI/roberta-base