See axolotl config
axolotl version: 0.4.1
absolute_data_files: false
adapter: lora
base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
- 1c10a6df6572c750_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/
type:
field_instruction: instruct
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
dpo:
beta: 0.1
enabled: true
group_by_length: false
rank_loss: true
reference_model: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
gradient_clipping: 0.85
group_by_length: false
hub_model_id: dimasik2987/29371ad9-9616-4639-b1c6-c25008ae9589
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 2.0e-07
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 300
micro_batch_size: 12
mixed_precision: bf16
mlflow_experiment_name: /tmp/1c10a6df6572c750_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8540c059-cbca-430f-b9f9-255727bda2d5
wandb_project: s56-7
wandb_run: your_name
wandb_runid: 8540c059-cbca-430f-b9f9-255727bda2d5
warmup_steps: 30
weight_decay: 0.02
xformers_attention: true
29371ad9-9616-4639-b1c6-c25008ae9589
This model is a fine-tuned version of aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.3070
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-07
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 24
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- training_steps: 300
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.0988 | 0.0002 | 1 | 3.3285 |
3.3766 | 0.0365 | 150 | 3.3146 |
2.6273 | 0.0731 | 300 | 3.3070 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for dimasik2987/29371ad9-9616-4639-b1c6-c25008ae9589
Base model
meta-llama/Meta-Llama-3-8B-Instruct
Finetuned
aisingapore/Llama-SEA-LION-v2-8B
Finetuned
aisingapore/Llama-SEA-LION-v2-8B-IT