Built with Axolotl

See axolotl config

axolotl version: 0.4.1

absolute_data_files: false
adapter: lora
base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
bf16: true
chat_template: llama3
dataset_prepared_path: /workspace/axolotl
datasets:
- data_files:
  - 1c10a6df6572c750_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/
  type:
    field_instruction: instruct
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
dpo:
  beta: 0.1
  enabled: true
  group_by_length: false
  rank_loss: true
  reference_model: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 1
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
gradient_clipping: 0.85
group_by_length: false
hub_model_id: dimasik2987/29371ad9-9616-4639-b1c6-c25008ae9589
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 2.0e-07
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 300
micro_batch_size: 12
mixed_precision: bf16
mlflow_experiment_name: /tmp/1c10a6df6572c750_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 1
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 8540c059-cbca-430f-b9f9-255727bda2d5
wandb_project: s56-7
wandb_run: your_name
wandb_runid: 8540c059-cbca-430f-b9f9-255727bda2d5
warmup_steps: 30
weight_decay: 0.02
xformers_attention: true

29371ad9-9616-4639-b1c6-c25008ae9589

This model is a fine-tuned version of aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3070

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-07
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 24
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • training_steps: 300

Training results

Training Loss Epoch Step Validation Loss
3.0988 0.0002 1 3.3285
3.3766 0.0365 150 3.3146
2.6273 0.0731 300 3.3070

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for dimasik2987/29371ad9-9616-4639-b1c6-c25008ae9589