| # Diffusers Tools | |
| This is a collection of scripts that can be useful for various tasks related to the [diffusers library](https://github.com/huggingface/diffusers) | |
| ## 1. Test against original checkpoints | |
| **It's very important to have visually the exact same results as the original code bases.!** | |
| E.g. to make use `diffusers` is identical to the original [CompVis codebase](https://github.com/CompVis/stable-diffusion), you can run the following script in the original CompVis codebase: | |
| 1. Download the original [SD-1-4 checkpoint](https://huggingface.co/CompVis/stable-diffusion-v1-4) and put it in the correct folder following the instructions on: https://github.com/CompVis/stable-diffusion | |
| 2. Run the following command | |
| ``` | |
| python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --seed 0 --n_samples 1 --n_rows 1 --n_iter 1 | |
| ``` | |
| and compare this to the same command in diffusers: | |
| ```python | |
| from diffusers import DiffusionPipeline, StableDiffusionPipeline, DDIMScheduler | |
| import torch | |
| # python scripts/txt2img.py --prompt "a photograph of an astronaut riding a horse" --seed 0 --n_samples 1 --n_rows 1 --n_iter 1 | |
| seed = 0 | |
| prompt = "a photograph of an astronaut riding a horse" | |
| pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16) | |
| pipe = pipe.to("cuda") | |
| pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
| torch.manual_seed(0) | |
| image = pipe(prompt, num_inference_steps=50).images[0] | |
| image.save("/home/patrick_huggingface_co/images/aa_comp.png") | |
| ``` | |
| Both commands should give the following image on a V100: | |
| ## 2. Test against [k-diffusion](https://github.com/crowsonkb/k-diffusion): | |
| You can run the following script to compare against k-diffusion. | |
| See results [here](https://huggingface.co/datasets/patrickvonplaten/images) | |
| ```python | |
| from diffusers import StableDiffusionKDiffusionPipeline, HeunDiscreteScheduler, StableDiffusionPipeline, DPMSolverMultistepScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler | |
| import torch | |
| import os | |
| seed = 13 | |
| inference_steps = 25 | |
| #checkpoint = "CompVis/stable-diffusion-v1-4" | |
| checkpoint = "stabilityai/stable-diffusion-2-1" | |
| prompts = ["astronaut riding horse", "whale falling from sky", "magical forest", "highly photorealistic picture of johnny depp"] | |
| prompts = 8 * ["highly photorealistic picture of johnny depp"] | |
| #prompts = prompts[:1] | |
| samplers = ["sample_dpmpp_2m", "sample_euler", "sample_heun", "sample_dpm_2", "sample_lms"] | |
| #samplers = samplers[:1] | |
| pipe = StableDiffusionKDiffusionPipeline.from_pretrained(checkpoint, torch_dtype=torch.float16, safety_checker=None) | |
| pipe = pipe.to("cuda") | |
| for i, prompt in enumerate(prompts): | |
| prompt_f = f"{'_'.join(prompt.split())}_{i}" | |
| for sampler in samplers: | |
| pipe.set_scheduler(sampler) | |
| torch.manual_seed(seed + i) | |
| image = pipe(prompt, num_inference_steps=inference_steps).images[0] | |
| checkpoint_f = f"{'--'.join(checkpoint.split('/'))}" | |
| os.makedirs(f"/home/patrick_huggingface_co/images/{checkpoint_f}", exist_ok=True) | |
| os.makedirs(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}", exist_ok=True) | |
| image.save(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}/{prompt_f}.png") | |
| pipe = StableDiffusionPipeline(**pipe.components) | |
| pipe = pipe.to("cuda") | |
| for i, prompt in enumerate(prompts): | |
| prompt_f = f"{'_'.join(prompt.split())}_{i}" | |
| for sampler in samplers: | |
| if sampler == "sample_euler": | |
| pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
| elif sampler == "sample_heun": | |
| pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config) | |
| elif sampler == "sample_dpmpp_2m": | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
| elif sampler == "sample_lms": | |
| pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | |
| torch.manual_seed(seed + i) | |
| image = pipe(prompt, num_inference_steps=inference_steps).images[0] | |
| checkpoint_f = f"{'--'.join(checkpoint.split('/'))}" | |
| os.makedirs("/home/patrick_huggingface_co/images/{checkpoint_f}", exist_ok=True) | |
| os.makedirs(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}", exist_ok=True) | |
| image.save(f"/home/patrick_huggingface_co/images/{checkpoint_f}/{sampler}/{prompt_f}_hf.png") | |
| ``` | |