YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Florence2 Image Annotator

This is a custom block designed to annotate images via text prompts using the Florence2 model. The model can be used as a processor to generate inpainting masks or bounding box annotations.

How to use

import torch
from diffusers.modular_pipelines import ModularPipelineBlocks, SequentialPipelineBlocks
from diffusers.modular_pipelines.stable_diffusion_xl import INPAINT_BLOCKS
from diffusers.utils import load_image

# fetch the Florence2 image annotator block that will create our mask
image_annotator_block = ModularPipelineBlocks.from_pretrained("diffusers/florence2-image-annotator", trust_remote_code=True)

my_blocks = INPAINT_BLOCKS.copy()
# insert the annotation block before the image encoding step
my_blocks.insert("image_annotator", image_annotator_block, 1)

# Create our initial set of inpainting blocks
blocks = SequentialPipelineBlocks.from_blocks_dict(my_blocks)

repo_id = "diffusers-internal-dev/modular-sdxl-inpainting"
pipe = blocks.init_pipeline(repo_id)
pipe.load_default_components(torch_dtype=torch.float16, device_map="cuda", trust_remote_code=True)

image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true")
image = image.resize((1024, 1024))

prompt = ["A red car"]
annotation_task = "<REFERRING_EXPRESSION_SEGMENTATION>"
annotation_prompt = ["the car"]

output = pipe(
    prompt=prompt,
    image=image,
    annotation_task=annotation_task,
    annotation_prompt=annotation_prompt,
    annotation_output_type="mask_image",
    num_inference_steps=35,
    guidance_scale=7.5,
    strength=0.95,
    output_type="pil",
)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support