Model Trained Using AutoTrain

  • Problem type: Tabular regression

Validation Metrics

  • r2: 0.5287307064016351
  • mse: 3.103168000915719e+19
  • mae: 2243863540.8
  • rmse: 5570608585.168877
  • rmsle: 8.027979609819264
  • loss: 5570608585.168877

Best Params

  • learning_rate: 0.11299209471906922
  • reg_lambda: 1.95078305416454e-06
  • reg_alpha: 0.03568550183373181
  • subsample: 0.6486218191662874
  • colsample_bytree: 0.22654368454464396
  • max_depth: 1
  • early_stopping_rounds: 481
  • n_estimators: 20000
  • eval_metric: rmse

Usage

import json
import joblib
import pandas as pd

model = joblib.load('model.joblib')
config = json.load(open('config.json'))

features = config['features']

# data = pd.read_csv("data.csv")
data = data[features]

predictions = model.predict(data)  # or model.predict_proba(data)

# predictions can be converted to original labels using label_encoders.pkl
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.

Spaces using diffuser34/autotrain-uzdtm-nwkp2 2