Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Framework versions

  • PEFT 0.4.0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 47.39
ARC (25-shot) 59.98
HellaSwag (10-shot) 82.43
MMLU (5-shot) 55.41
TruthfulQA (0-shot) 39.9
Winogrande (5-shot) 76.56
GSM8K (5-shot) 10.54
DROP (3-shot) 6.89
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dhmeltzer/Llama-2-13b-hf-eli5-wiki-1024_r_64_alpha_16

Adapter
(195)
this model

Spaces using dhmeltzer/Llama-2-13b-hf-eli5-wiki-1024_r_64_alpha_16 21