Contents
- Example notebooks
- Segmenting the C. elegans embryo
- Generating synthetic images of embryos with a GAN
- Predicting populations of cells within the C. elegans embryo
- Contributing to DevoLearn
- Links to datasets
- Contact us
Installation
pip install devolearn
Example notebooks
Segmenting the Cell Membrane in C. elegans embryo
- Importing the model
from devolearn import cell_membrane_segmentor
segmentor = cell_membrane_segmentor()
- Running the model on an image and viewing the prediction
seg_pred = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg")
plt.imshow(seg_pred)
plt.show()
- Running the model on a video and saving the predictions into a folder
filenames = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = False, save_folder = "preds")
- Finding the centroids of the segmented features
seg_pred, centroids = segmentor.predict(image_path = "sample_data/images/seg_sample.jpg", centroid_mode = True)
plt.imshow(seg_pred)
plt.show()
- Saving the centroids from each frame into a CSV
df = segmentor.predict_from_video(video_path = "sample_data/videos/seg_sample.mov", centroid_mode = True, save_folder = "preds")
df.to_csv("centroids.csv")
Segmenting the Cell Nucleus in C. elegans embryo
- Importing the model
from devolearn import cell_nucleus_segmentor
segmentor = cell_nucleus_segmentor()
- Running the model on an image and viewing the prediction
seg_pred = segmentor.predict(image_path = "sample_data/images/nucleus_seg_sample.jpg")
plt.imshow(seg_pred)
plt.show()
Generating synthetic images of embryos with a Pre-trained GAN
- Importing the model
from devolearn import Generator, embryo_generator_model
generator = embryo_generator_model()
- Generating a picture and viewing it with matplotlib
gen_image = generator.generate()
plt.imshow(gen_image)
plt.show()
- Generating n images and saving them into
foldername
with a custom size
generator.generate_n_images(n = 5, foldername= "generated_images", image_size= (700,500))
Predicting populations of cells within the C. elegans embryo
- Importing the population model for inferences
from devolearn import lineage_population_model
- Loading a model instance to be used to estimate lineage populations of embryos from videos/photos.
model = lineage_population_model(device = "cpu")
- Making a prediction from an image
print(model.predict(image_path = "sample_data/images/embryo_sample.png"))
- Making predictions from a video and saving the predictions into a CSV file
results = model.predict_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_csv = True, csv_name = "video_preds.csv", ignore_first_n_frames= 10, ignore_last_n_frames= 10, postprocess = False)
- Plotting the model's predictions from a video
plot = model.create_population_plot_from_video(video_path = "sample_data/videos/embryo_timelapse.mov", save_plot= True, plot_name= "plot.png", ignore_last_n_frames= 0, postprocess = False)
plot.show()
Links to Datasets
Model | Data source |
---|---|
Segmenting the cell membrane in C. elegans embryo | 3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo |
Segmenting the nucleus in C. elegans embryo | C. elegans Cell-Tracking-Challenge dataset |
Cell lineage population prediction + embryo GAN | EPIC dataset |
Links to HuggingFace spaces
Model | Huggingface |
---|---|
Segmenting the cell membrane in C. elegans embryo | Cell Membrane segmentor |
Segmenting the nucleus in C. elegans embryo | C. elegans Nucleus segmentor |
Cell lineage population prediction | Lineage population |
Authors/maintainers:
Feel free to join our Slack workspace!
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.