devngho's picture
Update README.md
1fc6c8a verified
---
base_model:
- lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3
datasets:
- devngho/ko_llm_annotations
language:
- ko
library_name: transformers
license: mit
metrics:
- f1
---
# devngho/ko_edu_classifier_v2_lemon-mint_LaBSE-EnKo-Nano-Preview-v0.3
์ด ๋ชจ๋ธ์€ [lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3](https://huggingface.co/lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3)์— classifier๋ฅผ ์ถ”๊ฐ€ํ•œ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier)์˜ ํ•œ๊ตญ์–ด ๋ฒ„์ „์„ ๋ชฉํ‘œ๋กœ, ํ•œ๊ตญ์–ด ์›น ํŽ˜์ด์ง€์˜ ๊ต์œก์„ฑ ์ ์ˆ˜๋ฅผ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค.
ํ•™์Šต์—๋Š” [blueapple8259/c4-ko-cleaned-2](https://huggingface.co/datasets/blueapple8259/c4-ko-cleaned-2)์—์„œ ์ถ”์ถœํ•œ 500k ์ƒ˜ํ”Œ์„ [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)๋กœ ํ‰๊ฐ€ํ•œ [devngho/ko_llm_annotations](https://huggingface.co/datasets/devngho/ko_llm_annotations) ๋ฐ์ดํ„ฐ์…‹์ด ์‚ฌ์šฉ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
์ด ์—ฐ๊ตฌ๋Š” Google์˜ TPU Research Cloud [(TRC)](https://sites.research.google/trc/about/)์˜ Cloud TPU ์ œ๊ณต์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค. โšก
## ์ƒ์„ธ
- **์ œ์ž‘:** devngho
- **์–ธ์–ด:** ko
- **๋ผ์ด์„ ์Šค:** mit
- **๊ธฐ๋ฐ˜ ๋ชจ๋ธ:** [lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3](https://huggingface.co/lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3)
## ํ•™์Šต ์ƒ์„ธ
- learning_rate: 3e-4 (cosine)
- warmup_ratio: 0.1
- batch_size: 512
- optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01)
- duration: 2h 56m
## ํ•™์Šต ์žฅ๋น„
TPU v4-8
## ์„ฑ๋Šฅ
```
Validation Report:
precision recall f1-score support
0 0.55 0.23 0.32 198
1 0.68 0.48 0.57 1553
2 0.37 0.69 0.49 1159
3 0.56 0.41 0.47 967
4 0.53 0.12 0.20 219
accuracy 0.49 4096
macro avg 0.54 0.39 0.41 4096
weighted avg 0.55 0.49 0.49 4096
Confusion Matrix:
[[ 45 118 35 0 0]
[ 34 752 728 39 0]
[ 3 201 803 147 5]
[ 0 31 521 396 19]
[ 0 1 61 130 27]]
```
ํ•œ๊ตญ์–ด ์ž„๋ฒ ๋”ฉ์˜ ํ•œ๊ณ„์™€ qwen2.5 32b ๋ชจ๋ธ์˜ ํ‰๊ฐ€ ํ•œ๊ณ„๋กœ ์„ฑ๋Šฅ์ด ๋‚ฎ์€ ๊ฒƒ์œผ๋กœ ๋ณด์ž…๋‹ˆ๋‹ค. 3 ์ด์ƒ๊ณผ ๋ฏธ๋งŒ์œผ๋กœ ๊ตฌ๋ถ„ํ•  ๋•Œ f1 score๋Š” ์•ฝ 0.59์ž…๋‹ˆ๋‹ค.
# devngho/ko_edu_classifier_v2_lemon-mint_LaBSE-EnKo-Nano-Preview-v0.3
This model is [lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3](https://huggingface.co/lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3) with classfier head. It is designed to evaluate the educational value of Korean web pages, similar to the [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier), but focused on Korean content. The training data comes from [devngho/ko_llm_annotations](https://huggingface.co/datasets/devngho/ko_llm_annotations) dataset, contains 500k samples extracted from [blueapple8259/c4-ko-cleaned-2](https://huggingface.co/datasets/blueapple8259/c4-ko-cleaned-2) and evaluated using [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct).
This research was supported with Cloud TPUs from Google's TPU Research Cloud [(TRC)](https://sites.research.google/trc/about/).โšก
- **Developed by:** devngho
- **Language(s):** ko
- **License:** mit
- **Base model:** [lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3](https://huggingface.co/lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3)
## Training detail
- learning_rate: 3e-4 (cosine)
- warmup_ratio: 0.1
- batch_size: 512
- optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01)
- duration: 2h 56m
## Training hardware
TPU v4-8
## Performance
```
Validation Report:
precision recall f1-score support
0 0.55 0.23 0.32 198
1 0.68 0.48 0.57 1553
2 0.37 0.69 0.49 1159
3 0.56 0.41 0.47 967
4 0.53 0.12 0.20 219
accuracy 0.49 4096
macro avg 0.54 0.39 0.41 4096
weighted avg 0.55 0.49 0.49 4096
Confusion Matrix:
[[ 45 118 35 0 0]
[ 34 752 728 39 0]
[ 3 201 803 147 5]
[ 0 31 521 396 19]
[ 0 1 61 130 27]]
```
The low performance is likely due to the limitations of Korean embeddings and the evaluation limitations of the Qwen2.5 32B model. The F1 score is about 0.59 when separating above and below 3.