|
--- |
|
base_model: |
|
- lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3 |
|
datasets: |
|
- devngho/ko_llm_annotations |
|
language: |
|
- ko |
|
library_name: transformers |
|
license: mit |
|
metrics: |
|
- f1 |
|
--- |
|
|
|
# devngho/ko_edu_classifier_v2_lemon-mint_LaBSE-EnKo-Nano-Preview-v0.3 |
|
|
|
์ด ๋ชจ๋ธ์ [lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3](https://huggingface.co/lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3)์ classifier๋ฅผ ์ถ๊ฐํ ๋ชจ๋ธ์
๋๋ค. [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier)์ ํ๊ตญ์ด ๋ฒ์ ์ ๋ชฉํ๋ก, ํ๊ตญ์ด ์น ํ์ด์ง์ ๊ต์ก์ฑ ์ ์๋ฅผ ํ๊ฐํฉ๋๋ค. |
|
ํ์ต์๋ [blueapple8259/c4-ko-cleaned-2](https://huggingface.co/datasets/blueapple8259/c4-ko-cleaned-2)์์ ์ถ์ถํ 500k ์ํ์ [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)๋ก ํ๊ฐํ [devngho/ko_llm_annotations](https://huggingface.co/datasets/devngho/ko_llm_annotations) ๋ฐ์ดํฐ์
์ด ์ฌ์ฉ๋์์ต๋๋ค. |
|
|
|
์ด ์ฐ๊ตฌ๋ Google์ TPU Research Cloud [(TRC)](https://sites.research.google/trc/about/)์ Cloud TPU ์ ๊ณต์ผ๋ก ์ํ๋์์ต๋๋ค. โก |
|
|
|
## ์์ธ |
|
|
|
- **์ ์:** devngho |
|
- **์ธ์ด:** ko |
|
- **๋ผ์ด์ ์ค:** mit |
|
- **๊ธฐ๋ฐ ๋ชจ๋ธ:** [lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3](https://huggingface.co/lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3) |
|
|
|
## ํ์ต ์์ธ |
|
|
|
- learning_rate: 3e-4 (cosine) |
|
- warmup_ratio: 0.1 |
|
- batch_size: 512 |
|
- optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01) |
|
- duration: 2h 56m |
|
|
|
## ํ์ต ์ฅ๋น |
|
|
|
TPU v4-8 |
|
|
|
## ์ฑ๋ฅ |
|
|
|
``` |
|
Validation Report: |
|
precision recall f1-score support |
|
|
|
0 0.55 0.23 0.32 198 |
|
1 0.68 0.48 0.57 1553 |
|
2 0.37 0.69 0.49 1159 |
|
3 0.56 0.41 0.47 967 |
|
4 0.53 0.12 0.20 219 |
|
|
|
accuracy 0.49 4096 |
|
macro avg 0.54 0.39 0.41 4096 |
|
weighted avg 0.55 0.49 0.49 4096 |
|
|
|
Confusion Matrix: |
|
[[ 45 118 35 0 0] |
|
[ 34 752 728 39 0] |
|
[ 3 201 803 147 5] |
|
[ 0 31 521 396 19] |
|
[ 0 1 61 130 27]] |
|
``` |
|
|
|
ํ๊ตญ์ด ์๋ฒ ๋ฉ์ ํ๊ณ์ qwen2.5 32b ๋ชจ๋ธ์ ํ๊ฐ ํ๊ณ๋ก ์ฑ๋ฅ์ด ๋ฎ์ ๊ฒ์ผ๋ก ๋ณด์
๋๋ค. 3 ์ด์๊ณผ ๋ฏธ๋ง์ผ๋ก ๊ตฌ๋ถํ ๋ f1 score๋ ์ฝ 0.59์
๋๋ค. |
|
|
|
# devngho/ko_edu_classifier_v2_lemon-mint_LaBSE-EnKo-Nano-Preview-v0.3 |
|
|
|
This model is [lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3](https://huggingface.co/lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3) with classfier head. It is designed to evaluate the educational value of Korean web pages, similar to the [HuggingFaceFW/fineweb-edu-classifier](https://huggingface.co/HuggingFaceFW/fineweb-edu-classifier), but focused on Korean content. The training data comes from [devngho/ko_llm_annotations](https://huggingface.co/datasets/devngho/ko_llm_annotations) dataset, contains 500k samples extracted from [blueapple8259/c4-ko-cleaned-2](https://huggingface.co/datasets/blueapple8259/c4-ko-cleaned-2) and evaluated using [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct). |
|
|
|
This research was supported with Cloud TPUs from Google's TPU Research Cloud [(TRC)](https://sites.research.google/trc/about/).โก |
|
|
|
- **Developed by:** devngho |
|
- **Language(s):** ko |
|
- **License:** mit |
|
- **Base model:** [lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3](https://huggingface.co/lemon-mint/LaBSE-EnKo-Nano-Preview-v0.3) |
|
|
|
## Training detail |
|
|
|
- learning_rate: 3e-4 (cosine) |
|
- warmup_ratio: 0.1 |
|
- batch_size: 512 |
|
- optimizer: adamw(b1=0.9, b2=0.98, eps=1e-8, weight_decay=0.01) |
|
- duration: 2h 56m |
|
|
|
## Training hardware |
|
|
|
TPU v4-8 |
|
|
|
## Performance |
|
|
|
``` |
|
Validation Report: |
|
precision recall f1-score support |
|
|
|
0 0.55 0.23 0.32 198 |
|
1 0.68 0.48 0.57 1553 |
|
2 0.37 0.69 0.49 1159 |
|
3 0.56 0.41 0.47 967 |
|
4 0.53 0.12 0.20 219 |
|
|
|
accuracy 0.49 4096 |
|
macro avg 0.54 0.39 0.41 4096 |
|
weighted avg 0.55 0.49 0.49 4096 |
|
|
|
Confusion Matrix: |
|
[[ 45 118 35 0 0] |
|
[ 34 752 728 39 0] |
|
[ 3 201 803 147 5] |
|
[ 0 31 521 396 19] |
|
[ 0 1 61 130 27]] |
|
``` |
|
|
|
The low performance is likely due to the limitations of Korean embeddings and the evaluation limitations of the Qwen2.5 32B model. The F1 score is about 0.59 when separating above and below 3. |