efficientnet-b0-accidents
This model is a fine-tuned version of google/efficientnet-b0 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3330
- Accuracy: 0.8367
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 256
- eval_batch_size: 256
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 1024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 0.4780 | 0.7959 |
No log | 2.0 | 2 | 0.4610 | 0.7959 |
No log | 3.0 | 3 | 0.4518 | 0.7755 |
No log | 4.0 | 4 | 0.4450 | 0.8163 |
No log | 5.0 | 5 | 0.4424 | 0.8265 |
No log | 6.0 | 6 | 0.4483 | 0.7959 |
No log | 7.0 | 7 | 0.4533 | 0.7959 |
No log | 8.0 | 8 | 0.4557 | 0.7959 |
No log | 9.0 | 9 | 0.4556 | 0.8265 |
0.4528 | 10.0 | 10 | 0.4453 | 0.8163 |
0.4528 | 11.0 | 11 | 0.4558 | 0.7755 |
0.4528 | 12.0 | 12 | 0.4390 | 0.8265 |
0.4528 | 13.0 | 13 | 0.4322 | 0.7959 |
0.4528 | 14.0 | 14 | 0.4323 | 0.8163 |
0.4528 | 15.0 | 15 | 0.4127 | 0.8061 |
0.4528 | 16.0 | 16 | 0.4341 | 0.8061 |
0.4528 | 17.0 | 17 | 0.4144 | 0.8265 |
0.4528 | 18.0 | 18 | 0.4275 | 0.8265 |
0.4528 | 19.0 | 19 | 0.3988 | 0.8673 |
0.4233 | 20.0 | 20 | 0.4210 | 0.7959 |
0.4233 | 21.0 | 21 | 0.4223 | 0.7755 |
0.4233 | 22.0 | 22 | 0.4288 | 0.8265 |
0.4233 | 23.0 | 23 | 0.3851 | 0.8571 |
0.4233 | 24.0 | 24 | 0.3956 | 0.8061 |
0.4233 | 25.0 | 25 | 0.4159 | 0.8367 |
0.4233 | 26.0 | 26 | 0.4055 | 0.8163 |
0.4233 | 27.0 | 27 | 0.3861 | 0.8163 |
0.4233 | 28.0 | 28 | 0.3751 | 0.8469 |
0.4233 | 29.0 | 29 | 0.3915 | 0.8367 |
0.3846 | 30.0 | 30 | 0.3705 | 0.8571 |
0.3846 | 31.0 | 31 | 0.3868 | 0.8367 |
0.3846 | 32.0 | 32 | 0.3710 | 0.8469 |
0.3846 | 33.0 | 33 | 0.3770 | 0.8469 |
0.3846 | 34.0 | 34 | 0.3903 | 0.8265 |
0.3846 | 35.0 | 35 | 0.3864 | 0.8469 |
0.3846 | 36.0 | 36 | 0.3728 | 0.8265 |
0.3846 | 37.0 | 37 | 0.3772 | 0.8367 |
0.3846 | 38.0 | 38 | 0.3633 | 0.8163 |
0.3846 | 39.0 | 39 | 0.3824 | 0.8469 |
0.3714 | 40.0 | 40 | 0.3520 | 0.8571 |
0.3714 | 41.0 | 41 | 0.3844 | 0.8469 |
0.3714 | 42.0 | 42 | 0.3564 | 0.8469 |
0.3714 | 43.0 | 43 | 0.3747 | 0.8673 |
0.3714 | 44.0 | 44 | 0.3395 | 0.8571 |
0.3714 | 45.0 | 45 | 0.3871 | 0.8163 |
0.3714 | 46.0 | 46 | 0.3487 | 0.8367 |
0.3714 | 47.0 | 47 | 0.3798 | 0.8163 |
0.3714 | 48.0 | 48 | 0.3848 | 0.8367 |
0.3714 | 49.0 | 49 | 0.3978 | 0.8265 |
0.3618 | 50.0 | 50 | 0.3384 | 0.8571 |
0.3618 | 51.0 | 51 | 0.3647 | 0.8265 |
0.3618 | 52.0 | 52 | 0.3544 | 0.8571 |
0.3618 | 53.0 | 53 | 0.4289 | 0.8163 |
0.3618 | 54.0 | 54 | 0.3568 | 0.8673 |
0.3618 | 55.0 | 55 | 0.3727 | 0.8673 |
0.3618 | 56.0 | 56 | 0.3796 | 0.8265 |
0.3618 | 57.0 | 57 | 0.3678 | 0.8571 |
0.3618 | 58.0 | 58 | 0.3719 | 0.8469 |
0.3618 | 59.0 | 59 | 0.3808 | 0.8878 |
0.327 | 60.0 | 60 | 0.3783 | 0.8163 |
0.327 | 61.0 | 61 | 0.3637 | 0.8367 |
0.327 | 62.0 | 62 | 0.3743 | 0.8367 |
0.327 | 63.0 | 63 | 0.3554 | 0.8571 |
0.327 | 64.0 | 64 | 0.3544 | 0.8265 |
0.327 | 65.0 | 65 | 0.3615 | 0.8469 |
0.327 | 66.0 | 66 | 0.3503 | 0.8673 |
0.327 | 67.0 | 67 | 0.3914 | 0.7959 |
0.327 | 68.0 | 68 | 0.3687 | 0.8367 |
0.327 | 69.0 | 69 | 0.3296 | 0.8878 |
0.3136 | 70.0 | 70 | 0.3548 | 0.8571 |
0.3136 | 71.0 | 71 | 0.3810 | 0.8265 |
0.3136 | 72.0 | 72 | 0.3522 | 0.8469 |
0.3136 | 73.0 | 73 | 0.3852 | 0.8367 |
0.3136 | 74.0 | 74 | 0.3434 | 0.8571 |
0.3136 | 75.0 | 75 | 0.3596 | 0.8571 |
0.3136 | 76.0 | 76 | 0.3551 | 0.8367 |
0.3136 | 77.0 | 77 | 0.4257 | 0.8163 |
0.3136 | 78.0 | 78 | 0.3554 | 0.8367 |
0.3136 | 79.0 | 79 | 0.3352 | 0.8265 |
0.316 | 80.0 | 80 | 0.3773 | 0.8367 |
0.316 | 81.0 | 81 | 0.3305 | 0.8469 |
0.316 | 82.0 | 82 | 0.3614 | 0.8571 |
0.316 | 83.0 | 83 | 0.3491 | 0.8265 |
0.316 | 84.0 | 84 | 0.3479 | 0.8571 |
0.316 | 85.0 | 85 | 0.3684 | 0.8367 |
0.316 | 86.0 | 86 | 0.3511 | 0.8571 |
0.316 | 87.0 | 87 | 0.3658 | 0.8265 |
0.316 | 88.0 | 88 | 0.3333 | 0.8367 |
0.316 | 89.0 | 89 | 0.3584 | 0.8776 |
0.3089 | 90.0 | 90 | 0.3277 | 0.8571 |
0.3089 | 91.0 | 91 | 0.3875 | 0.8367 |
0.3089 | 92.0 | 92 | 0.3757 | 0.8367 |
0.3089 | 93.0 | 93 | 0.3488 | 0.8367 |
0.3089 | 94.0 | 94 | 0.3282 | 0.8571 |
0.3089 | 95.0 | 95 | 0.3613 | 0.8571 |
0.3089 | 96.0 | 96 | 0.3753 | 0.8469 |
0.3089 | 97.0 | 97 | 0.3625 | 0.8469 |
0.3089 | 98.0 | 98 | 0.3930 | 0.8265 |
0.3089 | 99.0 | 99 | 0.3338 | 0.8469 |
0.3131 | 100.0 | 100 | 0.3330 | 0.8367 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for desarrolloasesoreslocales/efficientnet-b0-accidents
Base model
google/efficientnet-b0Evaluation results
- Accuracy on imagefoldervalidation set self-reported0.837