efficientnet-b0-accidents

This model is a fine-tuned version of google/efficientnet-b0 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3330
  • Accuracy: 0.8367

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1024
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.4780 0.7959
No log 2.0 2 0.4610 0.7959
No log 3.0 3 0.4518 0.7755
No log 4.0 4 0.4450 0.8163
No log 5.0 5 0.4424 0.8265
No log 6.0 6 0.4483 0.7959
No log 7.0 7 0.4533 0.7959
No log 8.0 8 0.4557 0.7959
No log 9.0 9 0.4556 0.8265
0.4528 10.0 10 0.4453 0.8163
0.4528 11.0 11 0.4558 0.7755
0.4528 12.0 12 0.4390 0.8265
0.4528 13.0 13 0.4322 0.7959
0.4528 14.0 14 0.4323 0.8163
0.4528 15.0 15 0.4127 0.8061
0.4528 16.0 16 0.4341 0.8061
0.4528 17.0 17 0.4144 0.8265
0.4528 18.0 18 0.4275 0.8265
0.4528 19.0 19 0.3988 0.8673
0.4233 20.0 20 0.4210 0.7959
0.4233 21.0 21 0.4223 0.7755
0.4233 22.0 22 0.4288 0.8265
0.4233 23.0 23 0.3851 0.8571
0.4233 24.0 24 0.3956 0.8061
0.4233 25.0 25 0.4159 0.8367
0.4233 26.0 26 0.4055 0.8163
0.4233 27.0 27 0.3861 0.8163
0.4233 28.0 28 0.3751 0.8469
0.4233 29.0 29 0.3915 0.8367
0.3846 30.0 30 0.3705 0.8571
0.3846 31.0 31 0.3868 0.8367
0.3846 32.0 32 0.3710 0.8469
0.3846 33.0 33 0.3770 0.8469
0.3846 34.0 34 0.3903 0.8265
0.3846 35.0 35 0.3864 0.8469
0.3846 36.0 36 0.3728 0.8265
0.3846 37.0 37 0.3772 0.8367
0.3846 38.0 38 0.3633 0.8163
0.3846 39.0 39 0.3824 0.8469
0.3714 40.0 40 0.3520 0.8571
0.3714 41.0 41 0.3844 0.8469
0.3714 42.0 42 0.3564 0.8469
0.3714 43.0 43 0.3747 0.8673
0.3714 44.0 44 0.3395 0.8571
0.3714 45.0 45 0.3871 0.8163
0.3714 46.0 46 0.3487 0.8367
0.3714 47.0 47 0.3798 0.8163
0.3714 48.0 48 0.3848 0.8367
0.3714 49.0 49 0.3978 0.8265
0.3618 50.0 50 0.3384 0.8571
0.3618 51.0 51 0.3647 0.8265
0.3618 52.0 52 0.3544 0.8571
0.3618 53.0 53 0.4289 0.8163
0.3618 54.0 54 0.3568 0.8673
0.3618 55.0 55 0.3727 0.8673
0.3618 56.0 56 0.3796 0.8265
0.3618 57.0 57 0.3678 0.8571
0.3618 58.0 58 0.3719 0.8469
0.3618 59.0 59 0.3808 0.8878
0.327 60.0 60 0.3783 0.8163
0.327 61.0 61 0.3637 0.8367
0.327 62.0 62 0.3743 0.8367
0.327 63.0 63 0.3554 0.8571
0.327 64.0 64 0.3544 0.8265
0.327 65.0 65 0.3615 0.8469
0.327 66.0 66 0.3503 0.8673
0.327 67.0 67 0.3914 0.7959
0.327 68.0 68 0.3687 0.8367
0.327 69.0 69 0.3296 0.8878
0.3136 70.0 70 0.3548 0.8571
0.3136 71.0 71 0.3810 0.8265
0.3136 72.0 72 0.3522 0.8469
0.3136 73.0 73 0.3852 0.8367
0.3136 74.0 74 0.3434 0.8571
0.3136 75.0 75 0.3596 0.8571
0.3136 76.0 76 0.3551 0.8367
0.3136 77.0 77 0.4257 0.8163
0.3136 78.0 78 0.3554 0.8367
0.3136 79.0 79 0.3352 0.8265
0.316 80.0 80 0.3773 0.8367
0.316 81.0 81 0.3305 0.8469
0.316 82.0 82 0.3614 0.8571
0.316 83.0 83 0.3491 0.8265
0.316 84.0 84 0.3479 0.8571
0.316 85.0 85 0.3684 0.8367
0.316 86.0 86 0.3511 0.8571
0.316 87.0 87 0.3658 0.8265
0.316 88.0 88 0.3333 0.8367
0.316 89.0 89 0.3584 0.8776
0.3089 90.0 90 0.3277 0.8571
0.3089 91.0 91 0.3875 0.8367
0.3089 92.0 92 0.3757 0.8367
0.3089 93.0 93 0.3488 0.8367
0.3089 94.0 94 0.3282 0.8571
0.3089 95.0 95 0.3613 0.8571
0.3089 96.0 96 0.3753 0.8469
0.3089 97.0 97 0.3625 0.8469
0.3089 98.0 98 0.3930 0.8265
0.3089 99.0 99 0.3338 0.8469
0.3131 100.0 100 0.3330 0.8367

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
1
Safetensors
Model size
4.05M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for desarrolloasesoreslocales/efficientnet-b0-accidents

Finetuned
(20)
this model

Evaluation results