llama-3.2-350M-fourier_multiplication_dataset_pert

This model is a fine-tuned version of llama_small_config.json on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
2.3155 0.1415 1000 2.3163
1.9908 0.2831 2000 1.9850
1.9252 0.4246 3000 1.9291
1.8977 0.5661 4000 1.8920
1.7984 0.7076 5000 1.7951
1.7595 0.8492 6000 1.7590
1.7511 0.9907 7000 1.7478

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.3.1+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
26
Safetensors
Model size
346M params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.