llama-3.2-350M-fourier_arithmetic_dataset

This model is a fine-tuned version of llama_small_config.json on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6047

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • total_eval_batch_size: 2
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.8493 0.1066 1000 1.8628
1.8654 0.2132 2000 1.8692
1.8328 0.3197 3000 1.8328
1.7287 0.4263 4000 1.7136
1.6856 0.5329 5000 1.6816
1.65 0.6395 6000 1.6494
1.6304 0.7460 7000 1.6308
1.6071 0.8526 8000 1.6119
1.6022 0.9592 9000 1.6047

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.3.1+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
26
Safetensors
Model size
346M params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.