metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:321
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: Since what year have they been married?
sentences:
- >-
Graph: Team Coco Knowledge Graph
Node ID: 2015_conan_cuba
Category: events
Name: Conan in Cuba
Type: Event
Description: Conan O'Brien traveled to Havana to film a historic
episode—the first by an American late-night host in over 50 years—part
of his 'Conan Without Borders' specials.
Relationships:
- Host conan_obrien
- Occurred during conan_tbs
- >-
Description: Liza Powel O'Brien is an American playwright and podcast
host. She met Conan O'Brien in 2000 while working at an advertising
agency, and they married in 2002. She has written numerous plays staged
at theaters like the Geffen Playhouse and Ojai Playwrights Conference,
and in 2022 she launched the history podcast "Significant Others" on
Conan's Team Coco network.
- |-
Relationships:
- Spouse conan_obrien (Strength: very strong)
Description: Married since 2002; they have two children together.
- Podcast host team_coco (Strength: moderate)
Description: Hosts the "Significant Others" podcast under the Team Coco banner.
- source_sentence: Which team produced Conan's final late night episode?
sentences:
- >-
Graph: Team Coco Knowledge Graph
Node ID: 2021_conan_finale
Category: events
Name: Conan's Final Late Night Episode
Type: Event
Description: The final episode of 'Conan' on TBS, marking the end of
Conan O'Brien's 28-year run as a late-night host with heartfelt goodbyes
and memorable comedy moments.
Relationships:
- Honoree conan_obrien
- Participant andy_richter
- Producer team_coco
- >-
References:
- ([Conan O'Brien -
Wikipedia](https://en.wikipedia.org/wiki/Conan_O%27Brien))
- ([Andy Richter Net Worth | Celebrity Net
Worth](https://www.celebritynetworth.com))
- 'Description: Airing on SiriusXM''s Team Coco Radio channel.'
- source_sentence: What type of document is referenced for the tour?
sentences:
- |-
Relationships:
- Late-night host conan_obrien (Strength: core talent)
Description: Conan's break in late night came through NBC.
- Production partner conaco (Strength: strong)
Description: NBC worked with Conaco on Conan's shows.
Awards and Recognitions:
- Legacy of late-night programming
- |-
Major Events:
- 1993 Joined 'Late Night' with Conan
- 2009 Transitioned to 'The Tonight Show'
- 2010 Concluded run as Conan's bandleader
- >-
References:
- ([The Legally Prohibited from Being Funny on Television Tour -
Wikipedia](https://en.wikipedia.org/wiki/The_Legally_Prohibited_from_Being_Funny_on_Television_Tour))
- source_sentence: In what year did Triumph the Insult Comic Dog debut?
sentences:
- |-
Relationships:
- Host-guest (Prankster) conan_obrien (Strength: moderate)
Description: Repeatedly played the 'Mac and Me' gag, to Conan's feigned exasperation.
Major Events:
- 2004 First Mac and Me Gag on 'Late Night'
- 2021 Final TBS Show Prank cameo
- >-
Awards and Recognitions:
- MFA in Fiction Writing from Columbia University
- Playwright with works at the Geffen Playhouse and Ojai Playwrights
Conference
- Host of the "Significant Others" podcast (2022–present)
- >-
Graph: Team Coco Knowledge Graph
Node ID: triumph_insult_comic_dog
Category: creative works
Name: Triumph the Insult Comic Dog
Type: Puppet character
Description: A recurring canine puppet character, voiced by Robert
Smigel, that debuted on Conan's 'Late Night' in 1997, known for roasting
celebrities and absurd humor.
Relationships:
- Creator/performer robert_smigel
- Host platform conan_obrien
- source_sentence: Who are the hosts of The Conan & Jordan Show?
sentences:
- |-
Awards and Recognitions:
- 7 Primetime Emmy nominations for writing on Conan's shows
- 10 WGA Award nominations (with 2 wins)
- 2 Daytime Emmy nominations for Animated Program performance
Major Events:
- 1993 Late Night Debut – Joined Conan's first show as sidekick.
- 2000 Departure – Left 'Late Night' to pursue acting.
- 2010 Tour & TBS Move – Reunited with Conan on the live tour and TBS.
- >-
Graph: Team Coco Knowledge Graph
Node ID: the_conan_and_jordan_show
Category: shows
Name: The Conan & Jordan Show (radio program)
Type: Show
Description: A spin-off audio series on SiriusXM's Team Coco Radio,
launched in 2023, featuring Conan O'Brien and Jordan Schlansky
continuing their comedic odd-couple dynamic.
- >-
Major Events:
- 2010 Premiere – 'Conan' debuted on TBS.
- 2015 'Conan Without Borders' – International travel specials aired.
- 2021 Finale – Conan ended his TBS run.
References:
- ([Conan O'Brien -
Wikipedia](https://en.wikipedia.org/wiki/Conan_O%27Brien))
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7222222222222222
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8611111111111112
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9166666666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9444444444444444
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7222222222222222
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2870370370370371
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18333333333333338
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09444444444444446
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7222222222222222
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8611111111111112
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9166666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9444444444444444
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8363985989991439
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.800925925925926
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8041634291634291
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6944444444444444
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8888888888888888
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9166666666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9722222222222222
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6944444444444444
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29629629629629634
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18333333333333335
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09722222222222224
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6944444444444444
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8888888888888888
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9166666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9722222222222222
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8349701465406345
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7909722222222222
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.791703216374269
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8611111111111112
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9166666666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9444444444444444
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6666666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28703703703703703
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18333333333333335
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09444444444444446
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8611111111111112
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9166666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9444444444444444
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8074890903790802
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7627314814814814
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7662037037037037
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6388888888888888
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8611111111111112
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9166666666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9444444444444444
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6388888888888888
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2870370370370371
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18333333333333338
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09444444444444446
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6388888888888888
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8611111111111112
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9166666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9444444444444444
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.803777679552595
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7574074074074074
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7597654530591711
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6111111111111112
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7777777777777778
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8333333333333334
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9166666666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6111111111111112
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2592592592592593
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16666666666666669
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09166666666666669
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6111111111111112
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7777777777777778
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8333333333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9166666666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7608354868794361
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7111441798941799
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7139831037236697
name: Cosine Map@100
Fine-tuned with QuicKB
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("densonsmith/modernbert-embed-quickb")
# Run inference
sentences = [
'Who are the hosts of The Conan & Jordan Show?',
"Graph: Team Coco Knowledge Graph\nNode ID: the_conan_and_jordan_show\nCategory: shows\nName: The Conan & Jordan Show (radio program)\nType: Show\n\nDescription: A spin-off audio series on SiriusXM's Team Coco Radio, launched in 2023, featuring Conan O'Brien and Jordan Schlansky continuing their comedic odd-couple dynamic.",
"Awards and Recognitions:\n- 7 Primetime Emmy nominations for writing on Conan's shows\n- 10 WGA Award nominations (with 2 wins)\n- 2 Daytime Emmy nominations for Animated Program performance\n\nMajor Events:\n- 1993 Late Night Debut – Joined Conan's first show as sidekick.\n- 2000 Departure – Left 'Late Night' to pursue acting.\n- 2010 Tour & TBS Move – Reunited with Conan on the live tour and TBS.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7222 | 0.6944 | 0.6667 | 0.6389 | 0.6111 |
cosine_accuracy@3 | 0.8611 | 0.8889 | 0.8611 | 0.8611 | 0.7778 |
cosine_accuracy@5 | 0.9167 | 0.9167 | 0.9167 | 0.9167 | 0.8333 |
cosine_accuracy@10 | 0.9444 | 0.9722 | 0.9444 | 0.9444 | 0.9167 |
cosine_precision@1 | 0.7222 | 0.6944 | 0.6667 | 0.6389 | 0.6111 |
cosine_precision@3 | 0.287 | 0.2963 | 0.287 | 0.287 | 0.2593 |
cosine_precision@5 | 0.1833 | 0.1833 | 0.1833 | 0.1833 | 0.1667 |
cosine_precision@10 | 0.0944 | 0.0972 | 0.0944 | 0.0944 | 0.0917 |
cosine_recall@1 | 0.7222 | 0.6944 | 0.6667 | 0.6389 | 0.6111 |
cosine_recall@3 | 0.8611 | 0.8889 | 0.8611 | 0.8611 | 0.7778 |
cosine_recall@5 | 0.9167 | 0.9167 | 0.9167 | 0.9167 | 0.8333 |
cosine_recall@10 | 0.9444 | 0.9722 | 0.9444 | 0.9444 | 0.9167 |
cosine_ndcg@10 | 0.8364 | 0.835 | 0.8075 | 0.8038 | 0.7608 |
cosine_mrr@10 | 0.8009 | 0.791 | 0.7627 | 0.7574 | 0.7111 |
cosine_map@100 | 0.8042 | 0.7917 | 0.7662 | 0.7598 | 0.714 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 321 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 321 samples:
anchor positive type string string details - min: 7 tokens
- mean: 14.03 tokens
- max: 24 tokens
- min: 15 tokens
- mean: 74.79 tokens
- max: 117 tokens
- Samples:
anchor positive What brand did Jeff Ross help establish?
Graph: Team Coco Knowledge Graph
Node ID: jeff_ross_producer
Category: people
Name: Jeff Ross (Producer)
Type: Person
Description: Jeff Ross is a television producer who has served as Conan O'Brien's executive producer since 1993. He is a key business partner in Conan's media ventures and helped establish the Team Coco brand.In what year did Conan O'Brien launch the travel show 'Conan O'Brien Must Go'?
Description: Conan O'Brien is an American television host, comedian, writer, actor, and producer, best known for hosting late-night shows including "Late Night with Conan O'Brien", "The Tonight Show with Conan O'Brien", and "Conan". He also hosts the podcast "Conan O'Brien Needs a Friend" and, in 2024, launched the travel show "Conan O'Brien Must Go" on Max.
What is the strength of the network TBS?
- Network tbs (Strength: parent)
Description: TBS provided the platform for the show. - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 4gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
1.0 | 6 | - | 0.7909 | 0.8034 | 0.7711 | 0.7992 | 0.6908 |
1.7901 | 10 | 16.3044 | - | - | - | - | - |
2.0 | 12 | - | 0.8364 | 0.8294 | 0.8022 | 0.8038 | 0.7691 |
3.0 | 18 | - | 0.8364 | 0.8313 | 0.8059 | 0.7938 | 0.7599 |
3.3951 | 20 | 5.6348 | 0.8364 | 0.8350 | 0.8075 | 0.8038 | 0.7608 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.4
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}