SentenceTransformer based on sentence-transformers/clip-ViT-L-14
This is a sentence-transformers model finetuned from sentence-transformers/clip-ViT-L-14 on the fashion-product-images-small dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/clip-ViT-L-14
- Maximum Sequence Length: 77 tokens
- Output Dimensionality: None dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): CLIPModel()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("dejasi5459/clip-fashionAssign-embeddings-final")
# Run inference
sentences = [
'Men , Footwear , Shoes , Casual Shoes , White , Fall , Casual , Lee Cooper Men White Shoes',
'Women , Basketballs , Winter , Smart Casual',
'Men , Bangle , Summer , Smart Casual',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.3406, 0.3490],
# [0.3406, 1.0000, 0.5437],
# [0.3490, 0.5437, 1.0000]])
Evaluation
Metrics
Triplet
- Datasets:
fashion-train
andfashion-valid
- Evaluated with
TripletEvaluator
Metric | fashion-train | fashion-valid |
---|---|---|
cosine_accuracy | 1.0 | 1.0 |
Training Details
Training Dataset
fashion-product-images-small
- Dataset: fashion-product-images-small at b19f176
- Size: 1,600 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type PIL.PngImagePlugin.PngImageFile string string details - min: 19 tokens
- mean: 24.39 tokens
- max: 44 tokens
- min: 9 tokens
- mean: 10.34 tokens
- max: 14 tokens
- Samples:
anchor positive negative Men , Apparel , Topwear , Tshirts , White , Summer , Casual , Reid & Taylor Men White T-shirt
Women , Leggings , Spring , Smart Casual
Men , Accessories , Watches , Watches , White , Winter , Casual , Titan Men White Watch
Women , Shoe Laces , Spring , Smart Casual
Unisex , Footwear , Sandal , Sandals , Purple , Fall , Casual , Crocs Kids Band Club Purple Floater
Unisex , Basketballs , Winter , Smart Casual
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
fashion-product-images-small
- Dataset: fashion-product-images-small at b19f176
- Size: 200 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 200 samples:
anchor positive negative type PIL.PngImagePlugin.PngImageFile string string details - min: 19 tokens
- mean: 24.66 tokens
- max: 47 tokens
- min: 9 tokens
- mean: 10.27 tokens
- max: 14 tokens
- Samples:
anchor positive negative Unisex , Accessories , Watches , Watches , Black , Winter , Casual , ADIDAS Unisex Digital Black Watch
Unisex , Umbrellas , Fall , Smart Casual
Men , Apparel , Topwear , Shirts , Yellow , Summer , Casual , Lee Men Check Yellow Shirts
Women , Jeggings , Winter , Smart Casual
Men , Apparel , Topwear , Shirts , Black , Fall , Casual , Highlander Men Black Check Shirt
Women , Trousers , Summer , Smart Casual
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 1e-05num_train_epochs
: 10
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | fashion-train_cosine_accuracy | fashion-valid_cosine_accuracy |
---|---|---|---|---|---|
-1 | -1 | - | - | 1.0 | 0.9900 |
0.02 | 1 | 1.9163 | - | - | - |
0.04 | 2 | 2.0686 | - | - | - |
0.06 | 3 | 2.0331 | - | - | - |
0.08 | 4 | 1.8132 | - | - | - |
0.1 | 5 | 1.9042 | - | - | - |
0.12 | 6 | 1.7977 | - | - | - |
0.14 | 7 | 2.0628 | - | - | - |
0.16 | 8 | 1.9983 | - | - | - |
0.18 | 9 | 1.7732 | - | - | - |
0.2 | 10 | 1.8224 | - | - | - |
0.22 | 11 | 1.727 | - | - | - |
0.24 | 12 | 1.6821 | - | - | - |
0.26 | 13 | 1.688 | - | - | - |
0.28 | 14 | 1.7912 | - | - | - |
0.3 | 15 | 1.7011 | - | - | - |
0.32 | 16 | 1.518 | - | - | - |
0.34 | 17 | 1.6247 | - | - | - |
0.36 | 18 | 1.5795 | - | - | - |
0.38 | 19 | 1.7838 | - | - | - |
0.4 | 20 | 1.7153 | - | - | - |
0.42 | 21 | 1.6448 | - | - | - |
0.44 | 22 | 1.5956 | - | - | - |
0.46 | 23 | 1.5494 | - | - | - |
0.48 | 24 | 1.3828 | - | - | - |
0.5 | 25 | 1.434 | - | - | - |
0.52 | 26 | 1.5452 | - | - | - |
0.54 | 27 | 1.5098 | - | - | - |
0.56 | 28 | 1.472 | - | - | - |
0.58 | 29 | 1.5855 | - | - | - |
0.6 | 30 | 1.4831 | - | - | - |
0.62 | 31 | 1.4432 | - | - | - |
0.64 | 32 | 1.364 | - | - | - |
0.66 | 33 | 1.4233 | - | - | - |
0.68 | 34 | 1.5127 | - | - | - |
0.7 | 35 | 1.6147 | - | - | - |
0.72 | 36 | 1.3725 | - | - | - |
0.74 | 37 | 1.4327 | - | - | - |
0.76 | 38 | 1.3983 | - | - | - |
0.78 | 39 | 1.5343 | - | - | - |
0.8 | 40 | 1.3662 | - | - | - |
0.82 | 41 | 1.3356 | - | - | - |
0.84 | 42 | 1.4722 | - | - | - |
0.86 | 43 | 1.3679 | - | - | - |
0.88 | 44 | 1.2656 | - | - | - |
0.9 | 45 | 1.4959 | - | - | - |
0.92 | 46 | 1.3207 | - | - | - |
0.94 | 47 | 1.3888 | - | - | - |
0.96 | 48 | 1.259 | - | - | - |
0.98 | 49 | 1.2591 | - | - | - |
1.0 | 50 | 1.3237 | 1.2671 | - | - |
1.02 | 51 | 1.2336 | - | - | - |
1.04 | 52 | 1.3364 | - | - | - |
1.06 | 53 | 1.3251 | - | - | - |
1.08 | 54 | 1.2173 | - | - | - |
1.1 | 55 | 1.2668 | - | - | - |
1.12 | 56 | 1.0908 | - | - | - |
1.1400 | 57 | 1.1957 | - | - | - |
1.16 | 58 | 1.2633 | - | - | - |
1.18 | 59 | 1.2269 | - | - | - |
1.2 | 60 | 1.2083 | - | - | - |
1.22 | 61 | 1.0891 | - | - | - |
1.24 | 62 | 1.11 | - | - | - |
1.26 | 63 | 1.2721 | - | - | - |
1.28 | 64 | 1.3018 | - | - | - |
1.3 | 65 | 1.1657 | - | - | - |
1.32 | 66 | 1.3642 | - | - | - |
1.34 | 67 | 1.3166 | - | - | - |
1.3600 | 68 | 1.2567 | - | - | - |
1.38 | 69 | 1.2287 | - | - | - |
1.4 | 70 | 1.2056 | - | - | - |
1.42 | 71 | 1.0841 | - | - | - |
1.44 | 72 | 0.9462 | - | - | - |
1.46 | 73 | 1.2305 | - | - | - |
1.48 | 74 | 1.1221 | - | - | - |
1.5 | 75 | 0.9881 | - | - | - |
1.52 | 76 | 1.0558 | - | - | - |
1.54 | 77 | 1.0167 | - | - | - |
1.56 | 78 | 1.3791 | - | - | - |
1.58 | 79 | 1.341 | - | - | - |
1.6 | 80 | 1.1092 | - | - | - |
1.62 | 81 | 1.1882 | - | - | - |
1.6400 | 82 | 0.9997 | - | - | - |
1.6600 | 83 | 1.2135 | - | - | - |
1.6800 | 84 | 0.9958 | - | - | - |
1.7 | 85 | 1.0348 | - | - | - |
1.72 | 86 | 1.106 | - | - | - |
1.74 | 87 | 1.0195 | - | - | - |
1.76 | 88 | 1.3001 | - | - | - |
1.78 | 89 | 1.0954 | - | - | - |
1.8 | 90 | 1.0328 | - | - | - |
1.8200 | 91 | 1.0133 | - | - | - |
1.8400 | 92 | 1.0182 | - | - | - |
1.8600 | 93 | 1.0294 | - | - | - |
1.88 | 94 | 1.0227 | - | - | - |
1.9 | 95 | 1.0773 | - | - | - |
1.92 | 96 | 1.0337 | - | - | - |
1.94 | 97 | 1.1762 | - | - | - |
1.96 | 98 | 0.8714 | - | - | - |
1.98 | 99 | 0.9945 | - | - | - |
2.0 | 100 | 1.1825 | 1.0181 | - | - |
2.02 | 101 | 0.9557 | - | - | - |
2.04 | 102 | 1.07 | - | - | - |
2.06 | 103 | 0.8845 | - | - | - |
2.08 | 104 | 1.1158 | - | - | - |
2.1 | 105 | 1.0213 | - | - | - |
2.12 | 106 | 0.9394 | - | - | - |
2.14 | 107 | 1.0508 | - | - | - |
2.16 | 108 | 0.8876 | - | - | - |
2.18 | 109 | 0.8878 | - | - | - |
2.2 | 110 | 1.0269 | - | - | - |
2.22 | 111 | 0.8653 | - | - | - |
2.24 | 112 | 0.9637 | - | - | - |
2.26 | 113 | 0.968 | - | - | - |
2.2800 | 114 | 0.9857 | - | - | - |
2.3 | 115 | 0.9416 | - | - | - |
2.32 | 116 | 1.0107 | - | - | - |
2.34 | 117 | 0.9104 | - | - | - |
2.36 | 118 | 1.003 | - | - | - |
2.38 | 119 | 1.0253 | - | - | - |
2.4 | 120 | 0.9514 | - | - | - |
2.42 | 121 | 0.9381 | - | - | - |
2.44 | 122 | 0.9415 | - | - | - |
2.46 | 123 | 0.8456 | - | - | - |
2.48 | 124 | 0.7915 | - | - | - |
2.5 | 125 | 1.0228 | - | - | - |
2.52 | 126 | 0.9115 | - | - | - |
2.54 | 127 | 0.8338 | - | - | - |
2.56 | 128 | 0.9415 | - | - | - |
2.58 | 129 | 0.8198 | - | - | - |
2.6 | 130 | 1.095 | - | - | - |
2.62 | 131 | 1.1151 | - | - | - |
2.64 | 132 | 0.7885 | - | - | - |
2.66 | 133 | 0.9445 | - | - | - |
2.68 | 134 | 0.867 | - | - | - |
2.7 | 135 | 0.8746 | - | - | - |
2.7200 | 136 | 0.9319 | - | - | - |
2.74 | 137 | 0.9741 | - | - | - |
2.76 | 138 | 1.0035 | - | - | - |
2.7800 | 139 | 0.9835 | - | - | - |
2.8 | 140 | 0.8572 | - | - | - |
2.82 | 141 | 1.0152 | - | - | - |
2.84 | 142 | 1.1073 | - | - | - |
2.86 | 143 | 0.9225 | - | - | - |
2.88 | 144 | 0.719 | - | - | - |
2.9 | 145 | 0.7328 | - | - | - |
2.92 | 146 | 0.7631 | - | - | - |
2.94 | 147 | 0.8256 | - | - | - |
2.96 | 148 | 0.8285 | - | - | - |
2.98 | 149 | 0.8175 | - | - | - |
3.0 | 150 | 1.0522 | 0.8857 | - | - |
3.02 | 151 | 1.001 | - | - | - |
3.04 | 152 | 0.8184 | - | - | - |
3.06 | 153 | 0.7647 | - | - | - |
3.08 | 154 | 0.8648 | - | - | - |
3.1 | 155 | 0.7486 | - | - | - |
3.12 | 156 | 0.8201 | - | - | - |
3.14 | 157 | 0.8933 | - | - | - |
3.16 | 158 | 0.7511 | - | - | - |
3.18 | 159 | 0.8493 | - | - | - |
3.2 | 160 | 0.787 | - | - | - |
3.22 | 161 | 0.798 | - | - | - |
3.24 | 162 | 0.8613 | - | - | - |
3.26 | 163 | 0.8167 | - | - | - |
3.2800 | 164 | 0.9566 | - | - | - |
3.3 | 165 | 0.9089 | - | - | - |
3.32 | 166 | 0.5744 | - | - | - |
3.34 | 167 | 1.2298 | - | - | - |
3.36 | 168 | 0.7741 | - | - | - |
3.38 | 169 | 0.7265 | - | - | - |
3.4 | 170 | 0.5814 | - | - | - |
3.42 | 171 | 0.8753 | - | - | - |
3.44 | 172 | 0.812 | - | - | - |
3.46 | 173 | 0.8883 | - | - | - |
3.48 | 174 | 0.8091 | - | - | - |
3.5 | 175 | 0.729 | - | - | - |
3.52 | 176 | 0.8884 | - | - | - |
3.54 | 177 | 0.8049 | - | - | - |
3.56 | 178 | 0.93 | - | - | - |
3.58 | 179 | 0.7467 | - | - | - |
3.6 | 180 | 0.6481 | - | - | - |
3.62 | 181 | 0.8336 | - | - | - |
3.64 | 182 | 0.7265 | - | - | - |
3.66 | 183 | 0.7028 | - | - | - |
3.68 | 184 | 0.8973 | - | - | - |
3.7 | 185 | 0.8358 | - | - | - |
3.7200 | 186 | 1.015 | - | - | - |
3.74 | 187 | 0.8058 | - | - | - |
3.76 | 188 | 0.7062 | - | - | - |
3.7800 | 189 | 0.6524 | - | - | - |
3.8 | 190 | 0.7342 | - | - | - |
3.82 | 191 | 0.7001 | - | - | - |
3.84 | 192 | 0.9632 | - | - | - |
3.86 | 193 | 0.9068 | - | - | - |
3.88 | 194 | 0.7152 | - | - | - |
3.9 | 195 | 0.7028 | - | - | - |
3.92 | 196 | 0.8554 | - | - | - |
3.94 | 197 | 0.581 | - | - | - |
3.96 | 198 | 0.7586 | - | - | - |
3.98 | 199 | 0.773 | - | - | - |
4.0 | 200 | 0.8258 | 0.8043 | - | - |
4.02 | 201 | 0.9255 | - | - | - |
4.04 | 202 | 0.6212 | - | - | - |
4.06 | 203 | 1.1683 | - | - | - |
4.08 | 204 | 0.6404 | - | - | - |
4.1 | 205 | 0.789 | - | - | - |
4.12 | 206 | 0.7202 | - | - | - |
4.14 | 207 | 0.8416 | - | - | - |
4.16 | 208 | 0.7614 | - | - | - |
4.18 | 209 | 0.754 | - | - | - |
4.2 | 210 | 0.6494 | - | - | - |
4.22 | 211 | 0.8913 | - | - | - |
4.24 | 212 | 0.8046 | - | - | - |
4.26 | 213 | 0.7114 | - | - | - |
4.28 | 214 | 0.8174 | - | - | - |
4.3 | 215 | 0.8075 | - | - | - |
4.32 | 216 | 0.7038 | - | - | - |
4.34 | 217 | 0.7458 | - | - | - |
4.36 | 218 | 0.6574 | - | - | - |
4.38 | 219 | 0.6443 | - | - | - |
4.4 | 220 | 0.6845 | - | - | - |
4.42 | 221 | 0.6008 | - | - | - |
4.44 | 222 | 0.7027 | - | - | - |
4.46 | 223 | 1.0495 | - | - | - |
4.48 | 224 | 0.9002 | - | - | - |
4.5 | 225 | 0.6933 | - | - | - |
4.52 | 226 | 0.8672 | - | - | - |
4.54 | 227 | 0.6823 | - | - | - |
4.5600 | 228 | 0.6828 | - | - | - |
4.58 | 229 | 0.7485 | - | - | - |
4.6 | 230 | 0.6692 | - | - | - |
4.62 | 231 | 0.6804 | - | - | - |
4.64 | 232 | 0.6779 | - | - | - |
4.66 | 233 | 0.7076 | - | - | - |
4.68 | 234 | 0.8468 | - | - | - |
4.7 | 235 | 0.5841 | - | - | - |
4.72 | 236 | 0.7031 | - | - | - |
4.74 | 237 | 0.6809 | - | - | - |
4.76 | 238 | 0.8763 | - | - | - |
4.78 | 239 | 0.7846 | - | - | - |
4.8 | 240 | 0.7742 | - | - | - |
4.82 | 241 | 0.6602 | - | - | - |
4.84 | 242 | 0.5466 | - | - | - |
4.86 | 243 | 0.6964 | - | - | - |
4.88 | 244 | 0.8074 | - | - | - |
4.9 | 245 | 0.6704 | - | - | - |
4.92 | 246 | 0.6502 | - | - | - |
4.9400 | 247 | 0.6901 | - | - | - |
4.96 | 248 | 0.8786 | - | - | - |
4.98 | 249 | 0.6718 | - | - | - |
5.0 | 250 | 0.714 | 0.7518 | - | - |
5.02 | 251 | 0.803 | - | - | - |
5.04 | 252 | 0.6007 | - | - | - |
5.06 | 253 | 0.9205 | - | - | - |
5.08 | 254 | 0.6226 | - | - | - |
5.1 | 255 | 0.6515 | - | - | - |
5.12 | 256 | 0.5465 | - | - | - |
5.14 | 257 | 0.6086 | - | - | - |
5.16 | 258 | 0.8689 | - | - | - |
5.18 | 259 | 0.7302 | - | - | - |
5.2 | 260 | 0.5103 | - | - | - |
5.22 | 261 | 0.6379 | - | - | - |
5.24 | 262 | 0.7859 | - | - | - |
5.26 | 263 | 0.6445 | - | - | - |
5.28 | 264 | 0.7541 | - | - | - |
5.3 | 265 | 0.6807 | - | - | - |
5.32 | 266 | 0.8424 | - | - | - |
5.34 | 267 | 0.5556 | - | - | - |
5.36 | 268 | 0.5292 | - | - | - |
5.38 | 269 | 0.6275 | - | - | - |
5.4 | 270 | 0.5637 | - | - | - |
5.42 | 271 | 0.8736 | - | - | - |
5.44 | 272 | 0.6416 | - | - | - |
5.46 | 273 | 0.7914 | - | - | - |
5.48 | 274 | 0.8647 | - | - | - |
5.5 | 275 | 0.6192 | - | - | - |
5.52 | 276 | 0.7312 | - | - | - |
5.54 | 277 | 0.6522 | - | - | - |
5.5600 | 278 | 0.6333 | - | - | - |
5.58 | 279 | 0.6222 | - | - | - |
5.6 | 280 | 0.583 | - | - | - |
5.62 | 281 | 0.7436 | - | - | - |
5.64 | 282 | 0.6998 | - | - | - |
5.66 | 283 | 0.579 | - | - | - |
5.68 | 284 | 0.7935 | - | - | - |
5.7 | 285 | 0.566 | - | - | - |
5.72 | 286 | 0.6156 | - | - | - |
5.74 | 287 | 0.8793 | - | - | - |
5.76 | 288 | 0.6694 | - | - | - |
5.78 | 289 | 0.5666 | - | - | - |
5.8 | 290 | 0.5288 | - | - | - |
5.82 | 291 | 0.6879 | - | - | - |
5.84 | 292 | 0.5784 | - | - | - |
5.86 | 293 | 0.8357 | - | - | - |
5.88 | 294 | 0.6114 | - | - | - |
5.9 | 295 | 0.6998 | - | - | - |
5.92 | 296 | 0.7603 | - | - | - |
5.9400 | 297 | 0.6598 | - | - | - |
5.96 | 298 | 0.768 | - | - | - |
5.98 | 299 | 0.6153 | - | - | - |
6.0 | 300 | 0.8114 | 0.7178 | - | - |
6.02 | 301 | 0.5707 | - | - | - |
6.04 | 302 | 0.8128 | - | - | - |
6.06 | 303 | 0.6975 | - | - | - |
6.08 | 304 | 0.7205 | - | - | - |
6.1 | 305 | 0.5987 | - | - | - |
6.12 | 306 | 0.6822 | - | - | - |
6.14 | 307 | 0.567 | - | - | - |
6.16 | 308 | 0.4776 | - | - | - |
6.18 | 309 | 0.651 | - | - | - |
6.2 | 310 | 0.626 | - | - | - |
6.22 | 311 | 0.7653 | - | - | - |
6.24 | 312 | 0.7728 | - | - | - |
6.26 | 313 | 0.5846 | - | - | - |
6.28 | 314 | 0.5164 | - | - | - |
6.3 | 315 | 0.7453 | - | - | - |
6.32 | 316 | 0.7956 | - | - | - |
6.34 | 317 | 0.7468 | - | - | - |
6.36 | 318 | 0.627 | - | - | - |
6.38 | 319 | 0.3958 | - | - | - |
6.4 | 320 | 0.7394 | - | - | - |
6.42 | 321 | 0.8124 | - | - | - |
6.44 | 322 | 0.7593 | - | - | - |
6.46 | 323 | 0.5382 | - | - | - |
6.48 | 324 | 0.7733 | - | - | - |
6.5 | 325 | 0.7539 | - | - | - |
6.52 | 326 | 0.5988 | - | - | - |
6.54 | 327 | 0.6218 | - | - | - |
6.5600 | 328 | 0.5294 | - | - | - |
6.58 | 329 | 0.5019 | - | - | - |
6.6 | 330 | 0.7233 | - | - | - |
6.62 | 331 | 0.6016 | - | - | - |
6.64 | 332 | 0.4056 | - | - | - |
6.66 | 333 | 0.508 | - | - | - |
6.68 | 334 | 0.5945 | - | - | - |
6.7 | 335 | 0.6626 | - | - | - |
6.72 | 336 | 0.6478 | - | - | - |
6.74 | 337 | 0.6447 | - | - | - |
6.76 | 338 | 0.5704 | - | - | - |
6.78 | 339 | 0.4938 | - | - | - |
6.8 | 340 | 0.6515 | - | - | - |
6.82 | 341 | 0.7325 | - | - | - |
6.84 | 342 | 0.6743 | - | - | - |
6.86 | 343 | 0.483 | - | - | - |
6.88 | 344 | 0.8484 | - | - | - |
6.9 | 345 | 0.6259 | - | - | - |
6.92 | 346 | 0.5538 | - | - | - |
6.9400 | 347 | 0.6483 | - | - | - |
6.96 | 348 | 0.4833 | - | - | - |
6.98 | 349 | 0.509 | - | - | - |
7.0 | 350 | 0.6843 | 0.6944 | - | - |
7.02 | 351 | 0.5322 | - | - | - |
7.04 | 352 | 0.881 | - | - | - |
7.06 | 353 | 0.6108 | - | - | - |
7.08 | 354 | 0.5224 | - | - | - |
7.1 | 355 | 0.5953 | - | - | - |
7.12 | 356 | 0.7344 | - | - | - |
7.14 | 357 | 0.6669 | - | - | - |
7.16 | 358 | 0.6784 | - | - | - |
7.18 | 359 | 0.6312 | - | - | - |
7.2 | 360 | 0.8127 | - | - | - |
7.22 | 361 | 0.6002 | - | - | - |
7.24 | 362 | 0.4413 | - | - | - |
7.26 | 363 | 0.6409 | - | - | - |
7.28 | 364 | 0.677 | - | - | - |
7.3 | 365 | 0.4528 | - | - | - |
7.32 | 366 | 0.7866 | - | - | - |
7.34 | 367 | 0.5485 | - | - | - |
7.36 | 368 | 0.5949 | - | - | - |
7.38 | 369 | 0.6055 | - | - | - |
7.4 | 370 | 0.6179 | - | - | - |
7.42 | 371 | 0.7909 | - | - | - |
7.44 | 372 | 0.5334 | - | - | - |
7.46 | 373 | 0.6682 | - | - | - |
7.48 | 374 | 0.5925 | - | - | - |
7.5 | 375 | 0.7132 | - | - | - |
7.52 | 376 | 0.5729 | - | - | - |
7.54 | 377 | 0.8313 | - | - | - |
7.5600 | 378 | 0.6091 | - | - | - |
7.58 | 379 | 0.6929 | - | - | - |
7.6 | 380 | 0.5816 | - | - | - |
7.62 | 381 | 0.5816 | - | - | - |
7.64 | 382 | 0.5768 | - | - | - |
7.66 | 383 | 0.5584 | - | - | - |
7.68 | 384 | 0.4927 | - | - | - |
7.7 | 385 | 0.5489 | - | - | - |
7.72 | 386 | 0.6972 | - | - | - |
7.74 | 387 | 0.7099 | - | - | - |
7.76 | 388 | 0.5739 | - | - | - |
7.78 | 389 | 0.5394 | - | - | - |
7.8 | 390 | 0.5834 | - | - | - |
7.82 | 391 | 0.5081 | - | - | - |
7.84 | 392 | 0.5846 | - | - | - |
7.86 | 393 | 0.5713 | - | - | - |
7.88 | 394 | 0.8048 | - | - | - |
7.9 | 395 | 0.6146 | - | - | - |
7.92 | 396 | 0.5793 | - | - | - |
7.9400 | 397 | 0.6225 | - | - | - |
7.96 | 398 | 0.6097 | - | - | - |
7.98 | 399 | 0.6231 | - | - | - |
8.0 | 400 | 0.4974 | 0.6788 | - | - |
8.02 | 401 | 0.4963 | - | - | - |
8.04 | 402 | 0.6387 | - | - | - |
8.06 | 403 | 0.6995 | - | - | - |
8.08 | 404 | 0.6847 | - | - | - |
8.1 | 405 | 0.7246 | - | - | - |
8.12 | 406 | 0.6532 | - | - | - |
8.14 | 407 | 0.612 | - | - | - |
8.16 | 408 | 0.6512 | - | - | - |
8.18 | 409 | 0.4676 | - | - | - |
8.2 | 410 | 0.656 | - | - | - |
8.22 | 411 | 0.6624 | - | - | - |
8.24 | 412 | 0.6024 | - | - | - |
8.26 | 413 | 0.4858 | - | - | - |
8.28 | 414 | 0.6221 | - | - | - |
8.3 | 415 | 0.5251 | - | - | - |
8.32 | 416 | 0.7109 | - | - | - |
8.34 | 417 | 0.6428 | - | - | - |
8.36 | 418 | 0.5752 | - | - | - |
8.38 | 419 | 0.7455 | - | - | - |
8.4 | 420 | 0.6478 | - | - | - |
8.42 | 421 | 0.609 | - | - | - |
8.44 | 422 | 0.6297 | - | - | - |
8.46 | 423 | 0.4464 | - | - | - |
8.48 | 424 | 0.6169 | - | - | - |
8.5 | 425 | 0.9958 | - | - | - |
8.52 | 426 | 0.6064 | - | - | - |
8.54 | 427 | 0.7579 | - | - | - |
8.56 | 428 | 0.7164 | - | - | - |
8.58 | 429 | 0.4353 | - | - | - |
8.6 | 430 | 0.5481 | - | - | - |
8.62 | 431 | 0.8304 | - | - | - |
8.64 | 432 | 0.5091 | - | - | - |
8.66 | 433 | 0.4245 | - | - | - |
8.68 | 434 | 0.5595 | - | - | - |
8.7 | 435 | 0.6432 | - | - | - |
8.72 | 436 | 0.539 | - | - | - |
8.74 | 437 | 0.5388 | - | - | - |
8.76 | 438 | 0.6111 | - | - | - |
8.78 | 439 | 0.6063 | - | - | - |
8.8 | 440 | 0.6886 | - | - | - |
8.82 | 441 | 0.5961 | - | - | - |
8.84 | 442 | 0.6632 | - | - | - |
8.86 | 443 | 0.4702 | - | - | - |
8.88 | 444 | 0.4392 | - | - | - |
8.9 | 445 | 0.6432 | - | - | - |
8.92 | 446 | 0.5324 | - | - | - |
8.94 | 447 | 0.4695 | - | - | - |
8.96 | 448 | 0.6815 | - | - | - |
8.98 | 449 | 0.6599 | - | - | - |
9.0 | 450 | 0.6482 | 0.6704 | - | - |
9.02 | 451 | 0.759 | - | - | - |
9.04 | 452 | 0.5211 | - | - | - |
9.06 | 453 | 0.5451 | - | - | - |
9.08 | 454 | 0.4266 | - | - | - |
9.1 | 455 | 0.6988 | - | - | - |
9.12 | 456 | 0.6712 | - | - | - |
9.14 | 457 | 0.6157 | - | - | - |
9.16 | 458 | 0.7611 | - | - | - |
9.18 | 459 | 0.5724 | - | - | - |
9.2 | 460 | 0.5893 | - | - | - |
9.22 | 461 | 0.6938 | - | - | - |
9.24 | 462 | 0.5091 | - | - | - |
9.26 | 463 | 0.5931 | - | - | - |
9.28 | 464 | 0.5522 | - | - | - |
9.3 | 465 | 0.541 | - | - | - |
9.32 | 466 | 0.5728 | - | - | - |
9.34 | 467 | 0.5663 | - | - | - |
9.36 | 468 | 0.6938 | - | - | - |
9.38 | 469 | 0.5606 | - | - | - |
9.4 | 470 | 0.6168 | - | - | - |
9.42 | 471 | 0.5904 | - | - | - |
9.44 | 472 | 0.7011 | - | - | - |
9.46 | 473 | 0.7389 | - | - | - |
9.48 | 474 | 0.5821 | - | - | - |
9.5 | 475 | 0.6894 | - | - | - |
9.52 | 476 | 0.4491 | - | - | - |
9.54 | 477 | 0.5093 | - | - | - |
9.56 | 478 | 0.6265 | - | - | - |
9.58 | 479 | 0.383 | - | - | - |
9.6 | 480 | 0.5199 | - | - | - |
9.62 | 481 | 0.5039 | - | - | - |
9.64 | 482 | 0.5531 | - | - | - |
9.66 | 483 | 0.7229 | - | - | - |
9.68 | 484 | 0.6617 | - | - | - |
9.7 | 485 | 0.5928 | - | - | - |
9.72 | 486 | 0.5856 | - | - | - |
9.74 | 487 | 0.6063 | - | - | - |
9.76 | 488 | 0.5973 | - | - | - |
9.78 | 489 | 0.5237 | - | - | - |
9.8 | 490 | 0.6722 | - | - | - |
9.82 | 491 | 0.5947 | - | - | - |
9.84 | 492 | 0.3775 | - | - | - |
9.86 | 493 | 0.4027 | - | - | - |
9.88 | 494 | 0.6215 | - | - | - |
9.9 | 495 | 0.4161 | - | - | - |
9.92 | 496 | 0.6457 | - | - | - |
9.94 | 497 | 0.5051 | - | - | - |
9.96 | 498 | 0.7163 | - | - | - |
9.98 | 499 | 0.5732 | - | - | - |
10.0 | 500 | 0.637 | 0.6677 | - | - |
-1 | -1 | - | - | 1.0 | 1.0 |
Framework Versions
- Python: 3.12.5
- Sentence Transformers: 5.0.0
- Transformers: 4.54.0
- PyTorch: 2.7.1+cu126
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for dejasi5459/clip-fashionAssign-embeddings-final
Base model
sentence-transformers/clip-ViT-L-14Dataset used to train dejasi5459/clip-fashionAssign-embeddings-final
Evaluation results
- Cosine Accuracy on fashion trainself-reported1.000
- Cosine Accuracy on fashion validself-reported1.000