Upload train_tokenizer.py
Browse files- train_tokenizer.py +172 -0
train_tokenizer.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# improved_train_tokenizer_v2.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
from tokenizers import Tokenizer, models, pre_tokenizers, decoders, trainers, processors, normalizers
|
6 |
+
from transformers import PreTrainedTokenizerFast
|
7 |
+
|
8 |
+
# --- Configuration ---
|
9 |
+
TRAIN_FILES = ["improved_sentences.txt"] # Use the preprocessed file
|
10 |
+
VOCAB_SIZE = 32000
|
11 |
+
SPECIAL_TOKENS = ["<pad>", "<unk>", "<s>", "</s>", "<mask>"]
|
12 |
+
OUTPUT_DIR = "./improved_tokenizer_v2"
|
13 |
+
|
14 |
+
# --- Input File Check ---
|
15 |
+
if not TRAIN_FILES or not os.path.exists(TRAIN_FILES[0]):
|
16 |
+
print(f"Error: Training file '{TRAIN_FILES[0]}' not found.")
|
17 |
+
sys.exit(1)
|
18 |
+
|
19 |
+
print(f"Starting tokenizer training...")
|
20 |
+
print(f"Training file(s): {TRAIN_FILES}")
|
21 |
+
print(f"Target vocab size: {VOCAB_SIZE}")
|
22 |
+
print(f"Output directory: {OUTPUT_DIR}")
|
23 |
+
|
24 |
+
# --- Initialize Tokenizer ---
|
25 |
+
# We'll use ByteLevel BPE with proper whitespace handling
|
26 |
+
tokenizer = Tokenizer(models.BPE(unk_token="<unk>"))
|
27 |
+
|
28 |
+
# --- Set Normalizer ---
|
29 |
+
# This helps standardize the text before tokenization
|
30 |
+
tokenizer.normalizer = normalizers.Sequence([
|
31 |
+
normalizers.NFC(), # Unicode normalization
|
32 |
+
normalizers.Replace(r"\s+", " ") # Replace multiple spaces with a single space
|
33 |
+
])
|
34 |
+
|
35 |
+
# --- Set Pre-tokenizer ---
|
36 |
+
# This is critical for handling whitespace correctly
|
37 |
+
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=True) # Back to True for proper space handling
|
38 |
+
print(f"Using pre-tokenizer: ByteLevel(add_prefix_space=True)")
|
39 |
+
|
40 |
+
# --- Set Decoder ---
|
41 |
+
tokenizer.decoder = decoders.ByteLevel()
|
42 |
+
print(f"Using decoder: {tokenizer.decoder.__class__.__name__}")
|
43 |
+
|
44 |
+
# --- Define Trainer ---
|
45 |
+
trainer = trainers.BpeTrainer(
|
46 |
+
vocab_size=VOCAB_SIZE,
|
47 |
+
special_tokens=SPECIAL_TOKENS,
|
48 |
+
show_progress=True,
|
49 |
+
initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
|
50 |
+
)
|
51 |
+
|
52 |
+
# --- Train Tokenizer ---
|
53 |
+
print("\nTraining the tokenizer model (this might take a while)...")
|
54 |
+
try:
|
55 |
+
tokenizer.train(files=TRAIN_FILES, trainer=trainer)
|
56 |
+
print("Training completed successfully.")
|
57 |
+
except Exception as e:
|
58 |
+
print(f"\nError during tokenizer training: {e}")
|
59 |
+
sys.exit(1)
|
60 |
+
|
61 |
+
# --- Add Post-processor ---
|
62 |
+
tokenizer.post_processor = processors.TemplateProcessing(
|
63 |
+
single="<s> $A </s>",
|
64 |
+
pair="<s> $A </s> $B </s>",
|
65 |
+
special_tokens=[
|
66 |
+
("<s>", tokenizer.token_to_id("<s>")),
|
67 |
+
("</s>", tokenizer.token_to_id("</s>")),
|
68 |
+
],
|
69 |
+
)
|
70 |
+
|
71 |
+
# --- Save Core Tokenizer ---
|
72 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
73 |
+
tokenizer_path = os.path.join(OUTPUT_DIR, "tokenizer.json")
|
74 |
+
try:
|
75 |
+
tokenizer.save(tokenizer_path)
|
76 |
+
print(f"\nCore tokenizer saved to: {tokenizer_path}")
|
77 |
+
except Exception as e:
|
78 |
+
print(f"Error saving core tokenizer: {e}")
|
79 |
+
sys.exit(1)
|
80 |
+
|
81 |
+
# --- Create and Save HF Wrapper ---
|
82 |
+
print("\nWrapping tokenizer with PreTrainedTokenizerFast...")
|
83 |
+
try:
|
84 |
+
hf_tokenizer = PreTrainedTokenizerFast(
|
85 |
+
tokenizer_file=tokenizer_path,
|
86 |
+
unk_token="<unk>",
|
87 |
+
pad_token="<pad>",
|
88 |
+
cls_token="<s>",
|
89 |
+
sep_token="</s>",
|
90 |
+
mask_token="<mask>",
|
91 |
+
add_prefix_space=True # Match the pre-tokenizer setting
|
92 |
+
)
|
93 |
+
hf_tokenizer.save_pretrained(OUTPUT_DIR)
|
94 |
+
print(f"Hugging Face compatible tokenizer files saved to: {OUTPUT_DIR}")
|
95 |
+
except Exception as e:
|
96 |
+
print(f"Error saving Hugging Face tokenizer: {e}")
|
97 |
+
sys.exit(1)
|
98 |
+
|
99 |
+
# --- Verification Step ---
|
100 |
+
print("\n--- Verification ---")
|
101 |
+
try:
|
102 |
+
print(f"Loading tokenizer for verification from: {OUTPUT_DIR}")
|
103 |
+
loaded_hf_tokenizer = PreTrainedTokenizerFast.from_pretrained(OUTPUT_DIR)
|
104 |
+
|
105 |
+
# Test multiple cases, especially those starting with periods or spaces
|
106 |
+
test_cases = [
|
107 |
+
"Simple sentence.",
|
108 |
+
" Sentence starting with space.",
|
109 |
+
"Sentence. Another sentence.",
|
110 |
+
". Sentence starting with period.",
|
111 |
+
"Word.Word",
|
112 |
+
"The quick brown fox jumps over the lazy dog."
|
113 |
+
]
|
114 |
+
|
115 |
+
print("\n=== Testing with new tokenizer ===")
|
116 |
+
for i, text in enumerate(test_cases):
|
117 |
+
print(f"\nTest {i+1}: '{text}'")
|
118 |
+
tokens = loaded_hf_tokenizer.tokenize(text)
|
119 |
+
print(f"Tokens: {tokens}")
|
120 |
+
|
121 |
+
encoded = loaded_hf_tokenizer.encode(text, add_special_tokens=True)
|
122 |
+
decoded = loaded_hf_tokenizer.decode(encoded, skip_special_tokens=True)
|
123 |
+
print(f"Encoded: {encoded}")
|
124 |
+
print(f"Decoded: '{decoded}'")
|
125 |
+
|
126 |
+
# Check if tokenization properly preserves content
|
127 |
+
if text.strip() == decoded.strip():
|
128 |
+
print("✓ Encoding/decoding preserved text content")
|
129 |
+
else:
|
130 |
+
print(f"⚠ Warning: Text content changed during encoding/decoding")
|
131 |
+
print(f" Original: '{text}'")
|
132 |
+
print(f" Decoded: '{decoded}'")
|
133 |
+
|
134 |
+
# Check first token distributions
|
135 |
+
print("\n=== First Position Token Analysis ===")
|
136 |
+
print("Analyzing first token after <s> for potential bias...")
|
137 |
+
|
138 |
+
# Simplified analysis of first token (just for demonstration)
|
139 |
+
from collections import Counter
|
140 |
+
first_token_counter = Counter()
|
141 |
+
|
142 |
+
with open(TRAIN_FILES[0], 'r', encoding='utf-8') as f:
|
143 |
+
for i, line in enumerate(f):
|
144 |
+
if i >= 100: # Just check first 100 lines
|
145 |
+
break
|
146 |
+
line = line.strip()
|
147 |
+
if not line:
|
148 |
+
continue
|
149 |
+
|
150 |
+
encoded = loaded_hf_tokenizer.encode(line, add_special_tokens=True)
|
151 |
+
if len(encoded) > 1: # Make sure there's at least one token after <s>
|
152 |
+
first_token_id = encoded[1]
|
153 |
+
first_token_counter[first_token_id] += 1
|
154 |
+
|
155 |
+
total = sum(first_token_counter.values())
|
156 |
+
if total > 0:
|
157 |
+
print(f"\nTop 5 tokens at first position (after <s>) from {total} samples:")
|
158 |
+
for token_id, count in first_token_counter.most_common(5):
|
159 |
+
token_text = loaded_hf_tokenizer.decode([token_id])
|
160 |
+
percentage = (count / total) * 100
|
161 |
+
print(f"Token: '{token_text}' (ID: {token_id}) | Count: {count} | {percentage:.2f}%")
|
162 |
+
|
163 |
+
# Specifically check period token
|
164 |
+
period_id = loaded_hf_tokenizer.encode('.', add_special_tokens=False)[0]
|
165 |
+
period_count = first_token_counter.get(period_id, 0)
|
166 |
+
period_percentage = (period_count / total) * 100 if total > 0 else 0
|
167 |
+
print(f"\nPeriod token ('.', ID: {period_id}) at first position: {period_count} times ({period_percentage:.2f}%)")
|
168 |
+
|
169 |
+
except Exception as e:
|
170 |
+
print(f"Error during verification: {e}")
|
171 |
+
|
172 |
+
print("\n--- Tokenizer training script finished ---")
|