Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app_interactive.py
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
import random
|
5 |
+
import os
|
6 |
+
import pandas as pd
|
7 |
+
from transformers import RobertaForMaskedLM, PreTrainedTokenizerFast
|
8 |
+
import re
|
9 |
+
|
10 |
+
# --- Configuration ---
|
11 |
+
CHECKPOINT_BASE_DIR = "./checkpoints"
|
12 |
+
PRESET_SENTENCE = "The quick brown fox jumps over the lazy dog near the river bank."
|
13 |
+
TOP_K = 5
|
14 |
+
|
15 |
+
# --- Initialize Session State ---
|
16 |
+
if 'masked_indices' not in st.session_state:
|
17 |
+
st.session_state.masked_indices = set()
|
18 |
+
if 'tokens' not in st.session_state:
|
19 |
+
st.session_state.tokens = []
|
20 |
+
if 'token_ids' not in st.session_state:
|
21 |
+
st.session_state.token_ids = []
|
22 |
+
if 'input_sentence' not in st.session_state:
|
23 |
+
st.session_state.input_sentence = PRESET_SENTENCE
|
24 |
+
if 'display_tokens' not in st.session_state:
|
25 |
+
st.session_state.display_tokens = []
|
26 |
+
|
27 |
+
# --- Helper Functions ---
|
28 |
+
def sanitize_token_display(token):
|
29 |
+
"""Clean up token display by removing special characters like Ġ."""
|
30 |
+
# Replace the 'Ġ' character with a more readable indicator
|
31 |
+
if isinstance(token, str) and token.startswith('Ġ'):
|
32 |
+
return token[1:] # Remove the Ġ character
|
33 |
+
# Handle other special tokens if needed
|
34 |
+
elif token in ['<s>', '</s>', '<pad>']:
|
35 |
+
return token
|
36 |
+
else:
|
37 |
+
return token
|
38 |
+
|
39 |
+
def find_checkpoints(base_dir):
|
40 |
+
"""Finds valid checkpoint directories within the base directory."""
|
41 |
+
checkpoints = []
|
42 |
+
if not os.path.isdir(base_dir):
|
43 |
+
return checkpoints
|
44 |
+
for item in os.listdir(base_dir):
|
45 |
+
path = os.path.join(base_dir, item)
|
46 |
+
if os.path.isdir(path) and item.startswith("checkpoint-"):
|
47 |
+
if os.path.exists(os.path.join(path, "pytorch_model.bin")) or \
|
48 |
+
os.path.exists(os.path.join(path, "model.safetensors")):
|
49 |
+
checkpoints.append(item)
|
50 |
+
checkpoints.sort(key=lambda x: int(re.search(r'(\d+)', x).group(1)))
|
51 |
+
return checkpoints
|
52 |
+
|
53 |
+
@st.cache_resource
|
54 |
+
def load_model_and_tokenizer(checkpoint_name):
|
55 |
+
"""Loads the model and tokenizer from the specified checkpoint directory name."""
|
56 |
+
checkpoint_path = os.path.join(CHECKPOINT_BASE_DIR, checkpoint_name)
|
57 |
+
if not os.path.isdir(checkpoint_path):
|
58 |
+
st.error(f"Checkpoint directory not found: {checkpoint_path}")
|
59 |
+
return None, None
|
60 |
+
try:
|
61 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
62 |
+
model = RobertaForMaskedLM.from_pretrained(checkpoint_path).to(device)
|
63 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(checkpoint_path)
|
64 |
+
model.eval()
|
65 |
+
#st.success(f"Loaded {checkpoint_name} on {device}")
|
66 |
+
return model, tokenizer, device
|
67 |
+
except Exception as e:
|
68 |
+
st.error(f"Error loading {checkpoint_name}: {e}")
|
69 |
+
return None, None, None
|
70 |
+
|
71 |
+
def tokenize_text(text, tokenizer):
|
72 |
+
"""Tokenize the input text and return tokens and their IDs."""
|
73 |
+
encoding = tokenizer(text, return_tensors="pt", add_special_tokens=True)
|
74 |
+
input_ids = encoding.input_ids[0].tolist()
|
75 |
+
|
76 |
+
# Get individual tokens
|
77 |
+
tokens = []
|
78 |
+
for id in input_ids:
|
79 |
+
token = tokenizer.convert_ids_to_tokens(id)
|
80 |
+
tokens.append(token)
|
81 |
+
|
82 |
+
return tokens, input_ids
|
83 |
+
|
84 |
+
def toggle_token(index):
|
85 |
+
"""Toggle a token's masked status."""
|
86 |
+
if index in st.session_state.masked_indices:
|
87 |
+
st.session_state.masked_indices.remove(index)
|
88 |
+
else:
|
89 |
+
st.session_state.masked_indices.add(index)
|
90 |
+
|
91 |
+
def update_input_sentence():
|
92 |
+
"""Update the input sentence and reset masked indices."""
|
93 |
+
st.session_state.input_sentence = st.session_state.input_text
|
94 |
+
st.session_state.masked_indices = set()
|
95 |
+
|
96 |
+
def get_predictions(model, tokenizer, device):
|
97 |
+
"""Get predictions for masked tokens."""
|
98 |
+
if not st.session_state.masked_indices:
|
99 |
+
return None, None, None, None
|
100 |
+
|
101 |
+
# Create a copy of the token IDs
|
102 |
+
masked_input_ids = st.session_state.token_ids.copy()
|
103 |
+
|
104 |
+
# Apply masks
|
105 |
+
for idx in st.session_state.masked_indices:
|
106 |
+
masked_input_ids[idx] = tokenizer.mask_token_id
|
107 |
+
|
108 |
+
# Convert to tensor
|
109 |
+
masked_input_tensor = torch.tensor([masked_input_ids]).to(device)
|
110 |
+
|
111 |
+
# Get predictions
|
112 |
+
with torch.no_grad():
|
113 |
+
outputs = model(input_ids=masked_input_tensor)
|
114 |
+
logits = outputs.logits
|
115 |
+
|
116 |
+
results = []
|
117 |
+
top1_predictions = {}
|
118 |
+
prediction_tokens = {}
|
119 |
+
original_token_ranks = {}
|
120 |
+
|
121 |
+
for masked_index in st.session_state.masked_indices:
|
122 |
+
mask_logits = logits[0, masked_index, :]
|
123 |
+
probabilities = torch.softmax(mask_logits, dim=-1)
|
124 |
+
top_k_probs, top_k_indices = torch.topk(probabilities, TOP_K)
|
125 |
+
|
126 |
+
# Save top-1 prediction for reconstruction
|
127 |
+
top1_id = top_k_indices[0].item()
|
128 |
+
top1_predictions[masked_index] = top1_id
|
129 |
+
|
130 |
+
# Sanitize the token here
|
131 |
+
raw_token = tokenizer.convert_ids_to_tokens(top1_id)
|
132 |
+
prediction_tokens[masked_index] = sanitize_token_display(raw_token)
|
133 |
+
|
134 |
+
original_token = st.session_state.tokens[masked_index]
|
135 |
+
original_id = st.session_state.token_ids[masked_index]
|
136 |
+
|
137 |
+
# Check if original token is in top K predictions
|
138 |
+
original_token_in_top_k = False
|
139 |
+
original_token_rank = -1 # -1 means not in top K
|
140 |
+
|
141 |
+
for rank, token_id in enumerate(top_k_indices.tolist()):
|
142 |
+
predicted_token = tokenizer.convert_ids_to_tokens(token_id)
|
143 |
+
if predicted_token.lower() == original_token.lower() or token_id == original_id:
|
144 |
+
original_token_in_top_k = True
|
145 |
+
original_token_rank = rank
|
146 |
+
break
|
147 |
+
|
148 |
+
original_token_ranks[masked_index] = original_token_rank
|
149 |
+
|
150 |
+
for rank, (prob, token_id) in enumerate(zip(top_k_probs.tolist(), top_k_indices.tolist())):
|
151 |
+
predicted_token = tokenizer.convert_ids_to_tokens(token_id)
|
152 |
+
# Sanitize the predicted token for the results table
|
153 |
+
clean_predicted_token = sanitize_token_display(predicted_token)
|
154 |
+
|
155 |
+
# Case insensitive match
|
156 |
+
is_match = predicted_token.lower() == original_token.lower()
|
157 |
+
results.append({
|
158 |
+
"Masked Index": masked_index,
|
159 |
+
"Rank": rank + 1,
|
160 |
+
"Predicted Token": clean_predicted_token, # Use sanitized token
|
161 |
+
"Original Token": sanitize_token_display(original_token), # Sanitize original token
|
162 |
+
"Exact Match": is_match,
|
163 |
+
"Probability": f"{prob:.4f}"
|
164 |
+
})
|
165 |
+
|
166 |
+
# Reconstruct the sentence using top-1 predictions
|
167 |
+
reconstructed_ids = masked_input_ids.copy()
|
168 |
+
for idx in st.session_state.masked_indices:
|
169 |
+
reconstructed_ids[idx] = top1_predictions[idx]
|
170 |
+
|
171 |
+
reconstructed_text = tokenizer.decode(reconstructed_ids, skip_special_tokens=True)
|
172 |
+
|
173 |
+
return results, reconstructed_text, prediction_tokens, original_token_ranks
|
174 |
+
|
175 |
+
# --- Streamlit App Layout ---
|
176 |
+
|
177 |
+
st.set_page_config(layout="wide", page_title="Interactive MLM Inference")
|
178 |
+
|
179 |
+
# Custom CSS to prevent text wrapping in buttons
|
180 |
+
st.markdown("""
|
181 |
+
<style>
|
182 |
+
.stButton button {
|
183 |
+
white-space: nowrap;
|
184 |
+
overflow: hidden;
|
185 |
+
text-overflow: ellipsis;
|
186 |
+
min-width: 80px;
|
187 |
+
}
|
188 |
+
</style>
|
189 |
+
""", unsafe_allow_html=True)
|
190 |
+
|
191 |
+
st.title("🧪 Interactive MLM Inference")
|
192 |
+
|
193 |
+
# --- Checkpoint Selection ---
|
194 |
+
available_checkpoints = find_checkpoints(CHECKPOINT_BASE_DIR)
|
195 |
+
|
196 |
+
if not available_checkpoints:
|
197 |
+
st.error(f"No checkpoints found in '{CHECKPOINT_BASE_DIR}'. Please train a model first.")
|
198 |
+
st.stop()
|
199 |
+
|
200 |
+
selected_checkpoint = st.selectbox(
|
201 |
+
"Select Checkpoint:",
|
202 |
+
available_checkpoints,
|
203 |
+
index=len(available_checkpoints) - 1
|
204 |
+
)
|
205 |
+
|
206 |
+
# --- Load Model ---
|
207 |
+
if selected_checkpoint:
|
208 |
+
model, tokenizer, device = load_model_and_tokenizer(selected_checkpoint)
|
209 |
+
else:
|
210 |
+
model, tokenizer, device = None, None, None
|
211 |
+
|
212 |
+
# --- Interactive Inference Section ---
|
213 |
+
st.divider()
|
214 |
+
st.subheader("Interactive Token Masking")
|
215 |
+
|
216 |
+
# 1. Original text area
|
217 |
+
st.text_area(
|
218 |
+
"Input Sentence:",
|
219 |
+
value=st.session_state.input_sentence,
|
220 |
+
key="input_text",
|
221 |
+
on_change=update_input_sentence,
|
222 |
+
height=100
|
223 |
+
)
|
224 |
+
|
225 |
+
if model and tokenizer and device:
|
226 |
+
# Tokenize the input text
|
227 |
+
st.session_state.tokens, st.session_state.token_ids = tokenize_text(
|
228 |
+
st.session_state.input_sentence,
|
229 |
+
tokenizer
|
230 |
+
)
|
231 |
+
|
232 |
+
# Create sanitized display tokens
|
233 |
+
st.session_state.display_tokens = [sanitize_token_display(token) for token in st.session_state.tokens]
|
234 |
+
|
235 |
+
# 2. Interactive token display
|
236 |
+
st.subheader("Click on tokens to mask/unmask them:")
|
237 |
+
|
238 |
+
# Group tokens into rows (adjust number as needed)
|
239 |
+
tokens_per_row = 12
|
240 |
+
|
241 |
+
# Calculate how many rows we need
|
242 |
+
num_rows = (len(st.session_state.tokens) + tokens_per_row - 1) // tokens_per_row
|
243 |
+
|
244 |
+
for row in range(num_rows):
|
245 |
+
# Create columns for this row
|
246 |
+
start_idx = row * tokens_per_row
|
247 |
+
end_idx = min(start_idx + tokens_per_row, len(st.session_state.tokens))
|
248 |
+
row_tokens = st.session_state.tokens[start_idx:end_idx]
|
249 |
+
|
250 |
+
# Create equal-width columns
|
251 |
+
cols = st.columns(len(row_tokens))
|
252 |
+
|
253 |
+
for j, col in enumerate(cols):
|
254 |
+
idx = start_idx + j
|
255 |
+
token = st.session_state.tokens[idx]
|
256 |
+
|
257 |
+
# Skip special tokens for masking
|
258 |
+
is_special = token in [
|
259 |
+
tokenizer.cls_token,
|
260 |
+
tokenizer.sep_token,
|
261 |
+
tokenizer.pad_token
|
262 |
+
]
|
263 |
+
|
264 |
+
is_masked = idx in st.session_state.masked_indices
|
265 |
+
|
266 |
+
# Create a button for each token
|
267 |
+
button_key = f"token_{idx}"
|
268 |
+
button_label = sanitize_token_display(token) if not is_masked else "[MASK]"
|
269 |
+
|
270 |
+
if col.button(
|
271 |
+
button_label,
|
272 |
+
key=button_key,
|
273 |
+
disabled=is_special,
|
274 |
+
help=f"Token ID: {st.session_state.token_ids[idx]}"
|
275 |
+
):
|
276 |
+
toggle_token(idx)
|
277 |
+
st.rerun()
|
278 |
+
|
279 |
+
# 3. Prediction area
|
280 |
+
if st.session_state.masked_indices:
|
281 |
+
results, reconstructed_text, prediction_tokens, original_token_ranks = get_predictions(model, tokenizer, device)
|
282 |
+
|
283 |
+
st.subheader("Predictions:")
|
284 |
+
st.markdown("**Reconstructed sentence with predictions:**")
|
285 |
+
|
286 |
+
# Create HTML for highlighting predictions
|
287 |
+
html = "<div style='padding: 10px; border-radius: 5px; border: 1px solid #ccc;'>"
|
288 |
+
|
289 |
+
# Use the original tokenization to match masked positions
|
290 |
+
for i, token in enumerate(st.session_state.tokens):
|
291 |
+
# Skip special tokens
|
292 |
+
if token in [tokenizer.cls_token, tokenizer.sep_token, tokenizer.pad_token]:
|
293 |
+
continue
|
294 |
+
|
295 |
+
if i in st.session_state.masked_indices:
|
296 |
+
# This was a masked token
|
297 |
+
original_token = sanitize_token_display(st.session_state.tokens[i])
|
298 |
+
predicted_token = prediction_tokens[i] # This is already sanitized in get_predictions
|
299 |
+
original_rank = original_token_ranks[i]
|
300 |
+
|
301 |
+
# Color based on original token's rank in predictions
|
302 |
+
if original_rank == 0: # Rank 0 means it was the top prediction
|
303 |
+
# Green for top prediction (rank 1)
|
304 |
+
html += f"<span style='background-color: #c3e6cb; padding: 2px 4px; border-radius: 3px; margin: 0 2px;'>{predicted_token}</span>"
|
305 |
+
elif original_rank != -1: # In top 5 but not top
|
306 |
+
# Blue for in top 5 but not top
|
307 |
+
html += f"<span style='background-color: #b8daff; padding: 2px 4px; border-radius: 3px; margin: 0 2px;'>{predicted_token}</span>"
|
308 |
+
else: # Not in top 5
|
309 |
+
# Red for not in top 5
|
310 |
+
html += f"<span style='background-color: #f8d7da; padding: 2px 4px; border-radius: 3px; margin: 0 2px;'>{predicted_token}</span>"
|
311 |
+
else:
|
312 |
+
# Not a masked token, display normally
|
313 |
+
sanitized_token = sanitize_token_display(token)
|
314 |
+
html += f"{sanitized_token} "
|
315 |
+
|
316 |
+
html += "</div>"
|
317 |
+
|
318 |
+
# Display the highlighted text
|
319 |
+
st.markdown(html, unsafe_allow_html=True)
|
320 |
+
|
321 |
+
# Show detailed predictions
|
322 |
+
st.markdown("**Top predictions for each masked token:**")
|
323 |
+
|
324 |
+
for masked_idx in st.session_state.masked_indices:
|
325 |
+
original_token = st.session_state.tokens[masked_idx]
|
326 |
+
original_rank = original_token_ranks[masked_idx]
|
327 |
+
|
328 |
+
# Create a note about whether the original token was in top predictions
|
329 |
+
if original_rank == 0:
|
330 |
+
rank_note = "✅ Original token was the top prediction"
|
331 |
+
elif original_rank != -1:
|
332 |
+
rank_note = f"ℹ️ Original token was prediction #{original_rank+1}"
|
333 |
+
else:
|
334 |
+
rank_note = "❌ Original token not in top 5 predictions"
|
335 |
+
|
336 |
+
# Sanitize the token display
|
337 |
+
clean_original_token = sanitize_token_display(original_token)
|
338 |
+
st.markdown(f"**Token {clean_original_token} at position {masked_idx}** - {rank_note}")
|
339 |
+
|
340 |
+
# The dataframe is already sanitized in the get_predictions function
|
341 |
+
df = pd.DataFrame([r for r in results if r['Masked Index'] == masked_idx])
|
342 |
+
df = df[["Rank", "Predicted Token", "Probability"]]
|
343 |
+
|
344 |
+
# Highlight the row with the original token if it's in top 5
|
345 |
+
if original_rank != -1:
|
346 |
+
# Use pandas styler to highlight the row
|
347 |
+
styled_df = df.style.apply(lambda x: ['background-color: #c3e6cb' if i == original_rank else '' for i in range(len(x))], axis=0)
|
348 |
+
st.dataframe(styled_df, use_container_width=True)
|
349 |
+
else:
|
350 |
+
st.dataframe(df, use_container_width=True)
|
351 |
+
else:
|
352 |
+
st.info("Click on tokens above to mask them and see predictions.")
|
353 |
+
else:
|
354 |
+
st.warning("Please select a valid checkpoint to enable interactive masking.")
|
355 |
+
|
356 |
+
st.divider()
|
357 |
+
st.caption("Interactive app for RoBERTa Masked Language Modeling.")
|