|
|
|
|
|
import os
|
|
import sys
|
|
from tokenizers import Tokenizer, models, pre_tokenizers, decoders, trainers, processors, normalizers
|
|
from transformers import PreTrainedTokenizerFast
|
|
|
|
|
|
TRAIN_FILES = ["improved_sentences.txt"]
|
|
VOCAB_SIZE = 32000
|
|
SPECIAL_TOKENS = ["<pad>", "<unk>", "<s>", "</s>", "<mask>"]
|
|
OUTPUT_DIR = "./improved_tokenizer_v2"
|
|
|
|
|
|
if not TRAIN_FILES or not os.path.exists(TRAIN_FILES[0]):
|
|
print(f"Error: Training file '{TRAIN_FILES[0]}' not found.")
|
|
sys.exit(1)
|
|
|
|
print(f"Starting tokenizer training...")
|
|
print(f"Training file(s): {TRAIN_FILES}")
|
|
print(f"Target vocab size: {VOCAB_SIZE}")
|
|
print(f"Output directory: {OUTPUT_DIR}")
|
|
|
|
|
|
|
|
tokenizer = Tokenizer(models.BPE(unk_token="<unk>"))
|
|
|
|
|
|
|
|
tokenizer.normalizer = normalizers.Sequence([
|
|
normalizers.NFC(),
|
|
normalizers.Replace(r"\s+", " ")
|
|
])
|
|
|
|
|
|
|
|
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=True)
|
|
print(f"Using pre-tokenizer: ByteLevel(add_prefix_space=True)")
|
|
|
|
|
|
tokenizer.decoder = decoders.ByteLevel()
|
|
print(f"Using decoder: {tokenizer.decoder.__class__.__name__}")
|
|
|
|
|
|
trainer = trainers.BpeTrainer(
|
|
vocab_size=VOCAB_SIZE,
|
|
special_tokens=SPECIAL_TOKENS,
|
|
show_progress=True,
|
|
initial_alphabet=pre_tokenizers.ByteLevel.alphabet(),
|
|
)
|
|
|
|
|
|
print("\nTraining the tokenizer model (this might take a while)...")
|
|
try:
|
|
tokenizer.train(files=TRAIN_FILES, trainer=trainer)
|
|
print("Training completed successfully.")
|
|
except Exception as e:
|
|
print(f"\nError during tokenizer training: {e}")
|
|
sys.exit(1)
|
|
|
|
|
|
tokenizer.post_processor = processors.TemplateProcessing(
|
|
single="<s> $A </s>",
|
|
pair="<s> $A </s> $B </s>",
|
|
special_tokens=[
|
|
("<s>", tokenizer.token_to_id("<s>")),
|
|
("</s>", tokenizer.token_to_id("</s>")),
|
|
],
|
|
)
|
|
|
|
|
|
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
|
tokenizer_path = os.path.join(OUTPUT_DIR, "tokenizer.json")
|
|
try:
|
|
tokenizer.save(tokenizer_path)
|
|
print(f"\nCore tokenizer saved to: {tokenizer_path}")
|
|
except Exception as e:
|
|
print(f"Error saving core tokenizer: {e}")
|
|
sys.exit(1)
|
|
|
|
|
|
print("\nWrapping tokenizer with PreTrainedTokenizerFast...")
|
|
try:
|
|
hf_tokenizer = PreTrainedTokenizerFast(
|
|
tokenizer_file=tokenizer_path,
|
|
unk_token="<unk>",
|
|
pad_token="<pad>",
|
|
cls_token="<s>",
|
|
sep_token="</s>",
|
|
mask_token="<mask>",
|
|
add_prefix_space=True
|
|
)
|
|
hf_tokenizer.save_pretrained(OUTPUT_DIR)
|
|
print(f"Hugging Face compatible tokenizer files saved to: {OUTPUT_DIR}")
|
|
except Exception as e:
|
|
print(f"Error saving Hugging Face tokenizer: {e}")
|
|
sys.exit(1)
|
|
|
|
|
|
print("\n--- Verification ---")
|
|
try:
|
|
print(f"Loading tokenizer for verification from: {OUTPUT_DIR}")
|
|
loaded_hf_tokenizer = PreTrainedTokenizerFast.from_pretrained(OUTPUT_DIR)
|
|
|
|
|
|
test_cases = [
|
|
"Simple sentence.",
|
|
" Sentence starting with space.",
|
|
"Sentence. Another sentence.",
|
|
". Sentence starting with period.",
|
|
"Word.Word",
|
|
"The quick brown fox jumps over the lazy dog."
|
|
]
|
|
|
|
print("\n=== Testing with new tokenizer ===")
|
|
for i, text in enumerate(test_cases):
|
|
print(f"\nTest {i+1}: '{text}'")
|
|
tokens = loaded_hf_tokenizer.tokenize(text)
|
|
print(f"Tokens: {tokens}")
|
|
|
|
encoded = loaded_hf_tokenizer.encode(text, add_special_tokens=True)
|
|
decoded = loaded_hf_tokenizer.decode(encoded, skip_special_tokens=True)
|
|
print(f"Encoded: {encoded}")
|
|
print(f"Decoded: '{decoded}'")
|
|
|
|
|
|
if text.strip() == decoded.strip():
|
|
print("✓ Encoding/decoding preserved text content")
|
|
else:
|
|
print(f"⚠ Warning: Text content changed during encoding/decoding")
|
|
print(f" Original: '{text}'")
|
|
print(f" Decoded: '{decoded}'")
|
|
|
|
|
|
print("\n=== First Position Token Analysis ===")
|
|
print("Analyzing first token after <s> for potential bias...")
|
|
|
|
|
|
from collections import Counter
|
|
first_token_counter = Counter()
|
|
|
|
with open(TRAIN_FILES[0], 'r', encoding='utf-8') as f:
|
|
for i, line in enumerate(f):
|
|
if i >= 100:
|
|
break
|
|
line = line.strip()
|
|
if not line:
|
|
continue
|
|
|
|
encoded = loaded_hf_tokenizer.encode(line, add_special_tokens=True)
|
|
if len(encoded) > 1:
|
|
first_token_id = encoded[1]
|
|
first_token_counter[first_token_id] += 1
|
|
|
|
total = sum(first_token_counter.values())
|
|
if total > 0:
|
|
print(f"\nTop 5 tokens at first position (after <s>) from {total} samples:")
|
|
for token_id, count in first_token_counter.most_common(5):
|
|
token_text = loaded_hf_tokenizer.decode([token_id])
|
|
percentage = (count / total) * 100
|
|
print(f"Token: '{token_text}' (ID: {token_id}) | Count: {count} | {percentage:.2f}%")
|
|
|
|
|
|
period_id = loaded_hf_tokenizer.encode('.', add_special_tokens=False)[0]
|
|
period_count = first_token_counter.get(period_id, 0)
|
|
period_percentage = (period_count / total) * 100 if total > 0 else 0
|
|
print(f"\nPeriod token ('.', ID: {period_id}) at first position: {period_count} times ({period_percentage:.2f}%)")
|
|
|
|
except Exception as e:
|
|
print(f"Error during verification: {e}")
|
|
|
|
print("\n--- Tokenizer training script finished ---") |