bert-base-multilingual-cased-finetuned-conceptNet-te

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0456

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 45 1.3708
No log 2.0 90 1.2736
No log 3.0 135 1.1219
No log 4.0 180 1.3133
1.3974 5.0 225 1.2969
1.3974 6.0 270 1.2416
1.3974 7.0 315 1.2252
1.3974 8.0 360 1.1990
1.0679 9.0 405 1.0824
1.0679 10.0 450 1.0680
1.0679 11.0 495 1.0228
1.0679 12.0 540 1.1910
1.0679 13.0 585 1.0335
0.9271 14.0 630 1.0809
0.9271 15.0 675 1.0019
0.9271 16.0 720 1.0216
0.9271 17.0 765 1.1762
0.8418 18.0 810 0.9434
0.8418 19.0 855 1.0431
0.8418 20.0 900 1.0873

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
41
Safetensors
Model size
178M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for deidaraTobi/bert-base-multilingual-cased-finetuned-conceptNet-te

Finetuned
(751)
this model