roberta-base distilled for Extractive QA

Overview

Language model: deepset/roberta-base-squad2-distilled
Language: English
Training data: SQuAD 2.0 training set
Eval data: SQuAD 2.0 dev set
Code: See an example extractive QA pipeline built with Haystack
Infrastructure: 4x V100 GPU
Published: Dec 8th, 2021

Details

  • haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model.

Hyperparameters

batch_size = 80
n_epochs = 4
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1
temperature = 1.5
distillation_loss_weight = 0.75

Usage

In Haystack

Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. To load and run the model with Haystack:

# After running pip install haystack-ai "transformers[torch,sentencepiece]"

from haystack import Document
from haystack.components.readers import ExtractiveReader

docs = [
    Document(content="Python is a popular programming language"),
    Document(content="python ist eine beliebte Programmiersprache"),
]

reader = ExtractiveReader(model="deepset/roberta-base-squad2-distilled")
reader.warm_up()

question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}

For a complete example with an extractive question answering pipeline that scales over many documents, check out the corresponding Haystack tutorial.

In Transformers

from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline

model_name = "deepset/roberta-base-squad2-distilled"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

Performance

"exact": 79.8366040596311
"f1": 83.916407079888

Authors

Timo Möller: [email protected]
Julian Risch: [email protected]
Malte Pietsch: [email protected]
Michel Bartels: [email protected]

About us

deepset is the company behind the production-ready open-source AI framework Haystack.

Some of our other work:

Get in touch and join the Haystack community

For more info on Haystack, visit our GitHub repo and Documentation.

We also have a Discord community open to everyone!

Twitter | LinkedIn | Discord | GitHub Discussions | Website | YouTube

By the way: we're hiring!

Downloads last month
237,273
Safetensors
Model size
124M params
Tensor type
I64
·
F32
·
Inference API

Dataset used to train deepset/roberta-base-squad2-distilled

Spaces using deepset/roberta-base-squad2-distilled 7

Evaluation results