|
<!-- markdownlint-disable first-line-h1 --> |
|
<!-- markdownlint-disable html --> |
|
<!-- markdownlint-disable no-duplicate-header --> |
|
|
|
<div align="center"> |
|
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek LLM" /> |
|
</div> |
|
<hr> |
|
<div align="center"> |
|
|
|
<a href="https://www.deepseek.com/" target="_blank"> |
|
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://chat.deepseek.com/" target="_blank"> |
|
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20LLM-536af5?color=536af5&logoColor=white?raw=true" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://huggingface.co/deepseek-ai" target="_blank"> |
|
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white?raw=true" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
|
|
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank"> |
|
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da?raw=true" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg" target="_blank"> |
|
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white?raw=true"style="display: inline-block; vertical-align: middle;" /> |
|
</a> |
|
<a href="https://twitter.com/deepseek_ai" target="_blank"> |
|
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white?raw=true" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="LICENSE-CODE"> |
|
<img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53?raw=true"style="display: inline-block; vertical-align: middle;"> |
|
</a> |
|
<a href="LICENSE-MODEL"> |
|
<img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53?raw=true"style="display: inline-block; vertical-align: middle;"> |
|
</a> |
|
</div> |
|
|
|
|
|
<p align="center"> |
|
<a href="#2-model-downloads">Model Download</a> | |
|
<a href="#3-evaluation-results">Evaluation Results</a> | |
|
<a href="#4-model-architecture">Model Architecture</a> | |
|
<a href="#6-api-platform">API Platform</a> | |
|
<a href="#8-license">License</a> | |
|
<a href="#9-citation">Citation</a> |
|
</p> |
|
|
|
<p align="center"> |
|
<a href="https://arxiv.org/abs/2405.04434"><b>Paper Link</b>👁️</a> |
|
</p> |
|
|
|
# DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model |
|
|
|
## 1. Introduction |
|
|
|
Last week, the release and buzz around DeepSeek-V2 have ignited widespread interest in MLA (Multi-head Latent Attention)! Many in the community suggested open-sourcing a smaller MoE model for in-depth research. And now DeepSeek-V2-Lite comes out: |
|
|
|
- 16B total params, 2.4B active params, scratch training with 5.7T tokens |
|
- Outperforms 7B dense and 16B MoE on many English & Chinese benchmarks |
|
- Deployable on single 40G GPU, fine-tunable on 8x80G GPUs |
|
|
|
DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. |
|
|
|
## 2. News |
|
|
|
- 2024.05.16: We released the DeepSeek-V2-Lite. |
|
- 2024.05.06: We released the DeepSeek-V2. |
|
|
|
## 3. Model Downloads |
|
|
|
With DeepSeek-V2, we are open-sourcing base and chat models across two sizes: |
|
|
|
<div align="center"> |
|
|
|
| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** | |
|
| :------------: | :------------: | :------------: | :------------: | :------------: | |
|
| DeepSeek-V2-Lite | 16B | 2.4B | 32k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) | |
|
| DeepSeek-V2-Lite-Chat (SFT) | 16B | 2.4B | 32k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat) | |
|
| DeepSeek-V2 | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2) | |
|
| DeepSeek-V2-Chat (RL) | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat) | |
|
|
|
</div> |
|
|
|
Due to the constraints of HuggingFace, the open-source code currently experiences slower performance than our internal codebase when running on GPUs with Huggingface. To facilitate the efficient execution of our model, we offer a dedicated vllm solution that optimizes performance for running our model effectively. |
|
|
|
## 4. Evaluation Results |
|
### Base Model |
|
#### Standard Benchmark |
|
<div align="center"> |
|
|
|
| **Benchmark** | **Domain** | **DeepSeek 7B (Dense)** | **DeepSeekMoE 16B** | **DeepSeek-V2-Lite (MoE-16B)** | |
|
|:-------------:|:----------:|:--------------:|:-----------------:|:--------------------------:| |
|
| **Architecture** | - | MHA+Dense | MHA+MoE | MLA+MoE | |
|
| **MMLU** | English | 48.2 | 45.0 | 58.3 | |
|
| **BBH** | English | 39.5 | 38.9 | 44.1 | |
|
| **C-Eval** | Chinese | 45.0 | 40.6 | 60.3 | |
|
| **CMMLU** | Chinese | 47.2 | 42.5 | 64.3 | |
|
| **HumanEval** | Code | 26.2 | 26.8 | 29.9 | |
|
| **MBPP** | Code | 39.0 | 39.2 | 43.2 | |
|
| **GSM8K** | Math | 17.4 | 18.8 | 41.1 | |
|
| **Math** | Math | 3.3 | 4.3 | 17.1 | |
|
|
|
</div> |
|
For more evaluation details, such as few-shot settings and prompts, please check our paper. |
|
|
|
|
|
### Chat Model |
|
#### Standard Benchmark |
|
|
|
<div align="center"> |
|
|
|
| Benchmark | Domain | DeepSeek 7B Chat (SFT) | DeepSeekMoE 16B Chat (SFT) | DeepSeek-V2-Lite 16B Chat (SFT) | |
|
|:-----------:|:----------------:|:------------------:|:---------------:|:---------------------:| |
|
| **MMLU** | English | 49.7 | 47.2 | 55.7 | |
|
| **BBH** | English | 43.1 | 42.2 | 48.1 | |
|
| **C-Eval** | Chinese | 44.7 | 40.0 | 60.1 | |
|
| **CMMLU** | Chinese | 51.2 | 49.3 | 62.5 | |
|
| **HumanEval** | Code | 45.1 | 45.7 | 57.3 | |
|
| **MBPP** | Code | 39.0 | 46.2 | 45.8 | |
|
| **GSM8K** | Math | 62.6 | 62.2 | 72.0 | |
|
| **Math** | Math | 14.7 | 15.2 | 27.9 | |
|
|
|
</div> |
|
|
|
|
|
## 5. Model Architecture |
|
DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference: |
|
- For attention, we design MLA (Multi-head Latent Attention), which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference. |
|
- For Feed-Forward Networks (FFNs), we adopt DeepSeekMoE architecture, a high-performance MoE architecture that enables training stronger models at lower costs. |
|
|
|
<p align="center"> |
|
<img width="90%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/architecture.png?raw=true" /> |
|
</p> |
|
|
|
## 6. How to run locally |
|
|
|
**To utilize DeepSeek-V2-Lite in BF16 format for inference, 40GB*1 GPU is required.** |
|
### Inference with Huggingface's Transformers |
|
You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference. |
|
|
|
#### Text Completion |
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig |
|
|
|
model_name = "deepseek-ai/DeepSeek-V2-Lite" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() |
|
model.generation_config = GenerationConfig.from_pretrained(model_name) |
|
model.generation_config.pad_token_id = model.generation_config.eos_token_id |
|
|
|
text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is" |
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100) |
|
|
|
result = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(result) |
|
``` |
|
|
|
#### Chat Completion |
|
```python |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig |
|
|
|
model_name = "deepseek-ai/DeepSeek-V2-Lite-Chat" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda() |
|
model.generation_config = GenerationConfig.from_pretrained(model_name) |
|
model.generation_config.pad_token_id = model.generation_config.eos_token_id |
|
|
|
messages = [ |
|
{"role": "user", "content": "Write a piece of quicksort code in C++"} |
|
] |
|
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") |
|
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100) |
|
|
|
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) |
|
print(result) |
|
``` |
|
|
|
The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository. |
|
|
|
An example of chat template is as belows: |
|
|
|
```bash |
|
<|begin▁of▁sentence|>User: {user_message_1} |
|
|
|
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2} |
|
|
|
Assistant: |
|
``` |
|
|
|
You can also add an optional system message: |
|
|
|
```bash |
|
<|begin▁of▁sentence|>{system_message} |
|
|
|
User: {user_message_1} |
|
|
|
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2} |
|
|
|
Assistant: |
|
``` |
|
|
|
### Inference with vLLM (recommended) |
|
To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
max_model_len, tp_size = 8192, 1 |
|
model_name = "deepseek-ai/DeepSeek-V2-Lite-Chat" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True) |
|
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) |
|
|
|
messages_list = [ |
|
[{"role": "user", "content": "Who are you?"}], |
|
[{"role": "user", "content": "Translate the following content into Chinese directly: DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference."}], |
|
[{"role": "user", "content": "Write a piece of quicksort code in C++."}], |
|
] |
|
|
|
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] |
|
|
|
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) |
|
|
|
generated_text = [output.outputs[0].text for output in outputs] |
|
print(generated_text) |
|
``` |
|
|
|
### LangChain Support |
|
Since our API is compatible with OpenAI, you can easily use it in [langchain](https://www.langchain.com/). |
|
Here is an example: |
|
|
|
``` |
|
from langchain_openai import ChatOpenAI |
|
llm = ChatOpenAI( |
|
model='deepseek-chat', |
|
openai_api_key=<your-deepseek-api-key>, |
|
openai_api_base='https://api.deepseek.com/v1', |
|
temperature=0.85, |
|
max_tokens=8000) |
|
``` |
|
## 7. License |
|
This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use. |
|
|
|
## 8. Citation |
|
``` |
|
@misc{deepseekv2, |
|
title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model}, |
|
author={DeepSeek-AI}, |
|
year={2024}, |
|
eprint={2405.04434}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
## 9. Contact |
|
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]). |
|
|