deepinfinityai's picture
End of training
eab03da verified
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- deepinfinityai/30_NLEM_Aug_audios_dataset
metrics:
- wer
model-index:
- name: v04_30_NLEM_Aug_Tablets_Model
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: /30_NLEM_Aug_audios_dataset
type: deepinfinityai/30_NLEM_Aug_audios_dataset
metrics:
- name: Wer
type: wer
value: 0.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# v04_30_NLEM_Aug_Tablets_Model
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the /30_NLEM_Aug_audios_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0001
- Wer: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 218
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.7877 | 1.0 | 44 | 7.8985 | 100.0 |
| 0.1978 | 2.0 | 88 | 0.0365 | 5.7143 |
| 0.0026 | 3.0 | 132 | 0.0002 | 0.0 |
| 0.0001 | 4.0 | 176 | 0.0001 | 0.0 |
### Framework versions
- Transformers 4.50.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0