30_sentencesV2 / README.md
deepinfinityai's picture
End of training
09f3d74 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large
tags:
  - generated_from_trainer
datasets:
  - deepinfinityai/30_report_sentences_dataset
metrics:
  - wer
model-index:
  - name: Whisper_Large_30_sent_ModelV2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: 11 Sentences
          type: deepinfinityai/30_report_sentences_dataset
        metrics:
          - name: Wer
            type: wer
            value: 5

Whisper_Large_30_sent_ModelV2

This model is a fine-tuned version of openai/whisper-large on the 11 Sentences dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2239
  • Wer: 5.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.7745 8.3333 50 1.2629 40.0
0.0301 16.6667 100 0.1945 5.0
0.0 25.0 150 0.2056 5.0
0.0 33.3333 200 0.2102 5.0
0.0 41.6667 250 0.2140 5.0
0.0 50.0 300 0.2172 5.0
0.0 58.3333 350 0.2198 5.0
0.0 66.6667 400 0.2220 5.0
0.0 75.0 450 0.2234 5.0
0.0 83.3333 500 0.2239 5.0

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0