See axolotl config
axolotl version: 0.10.0.dev0
adapter: qlora
base_model: NousResearch/Meta-Llama-3-8B-Instruct
bf16: auto
chat_template: tokenizer_default
dataset_prepared_path: null
datasets:
- path: deepakkarkala/sft_sitcom_chandlerbing_jsonl
split: train_without_fewshots
type: alpaca
evals_per_epoch: 4
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
hub_model_id: deepakkarkala/llama31-8b-sft-sitcom-lora
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 4
model_type: LlamaForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: ./outputs/lora-out
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: false
saves_per_epoch: 2
sequence_len: 512
special_tokens:
pad_token: <|end_of_text|>
tf32: false
tokenizer_type: AutoTokenizer
val_set_size: 0.05
wandb_entity: deepakkarkala-personal
wandb_log_model: checkpoint
wandb_name: sft_trial
wandb_project: finetuning_llama31_8b_sitcom
wandb_run_id: sft_trial_3
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
llama31-8b-sft-sitcom-lora
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B-Instruct on the deepakkarkala/sft_sitcom_chandlerbing_jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 1.8431
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 200
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.9323 | 0.0050 | 1 | 2.8320 |
2.0701 | 0.2506 | 50 | 1.9194 |
1.9102 | 0.5013 | 100 | 1.8692 |
1.9795 | 0.7519 | 150 | 1.8487 |
1.8136 | 1.0 | 200 | 1.8431 |
Framework versions
- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 183
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for deepakkarkala/llama31-8b-sft-sitcom-lora
Base model
NousResearch/Meta-Llama-3-8B-Instruct