flan-alpaca-xl-lora / README.md
soujanyaporia's picture
Update README.md
963dd3f
---
license: apache-2.0
datasets:
- tatsu-lab/alpaca
---
## ๐Ÿฎ ๐Ÿฆ™ Flan-Alpaca: Instruction Tuning from Humans and Machines
๐Ÿ“ฃ Curious to know the performance of ๐Ÿฎ ๐Ÿฆ™ **Flan-Alpaca** on large-scale LLM evaluation benchmark, **InstructEval**? Read our paper [https://arxiv.org/pdf/2306.04757.pdf](https://arxiv.org/pdf/2306.04757.pdf). We evaluated more than 10 open-source instruction-tuned LLMs belonging to various LLM families including Pythia, LLaMA, T5, UL2, OPT, and Mosaic. Codes and datasets: [https://github.com/declare-lab/instruct-eval](https://github.com/declare-lab/instruct-eval)
Our [repository](https://github.com/declare-lab/flan-alpaca) contains code for extending the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
synthetic instruction tuning to existing instruction-tuned models such as [Flan-T5](https://arxiv.org/abs/2210.11416).
The pretrained models and demos are available on HuggingFace ๐Ÿค— :
| Model | Parameters | Training GPUs |
|---------------------------------------------------------------------------|------------|-----------------|
| [Flan-Alpaca-Base](https://huggingface.co/declare-lab/flan-alpaca-base) | 220M | 1x A6000 |
| [Flan-Alpaca-Large](https://huggingface.co/declare-lab/flan-alpaca-large) | 770M | 1x A6000 |
| [Flan-Alpaca-XL](https://huggingface.co/declare-lab/flan-alpaca-xl) | 3B | 1x A6000 |
| [Flan-Alpaca-XXL](https://huggingface.co/declare-lab/flan-alpaca-xxl) | 11B | 4x A6000 (FSDP) |
### Why?
[Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html) represents an exciting new direction
to approximate the performance of large language models (LLMs) like ChatGPT cheaply and easily.
Concretely, they leverage an LLM such as GPT-3 to generate instructions as synthetic training data.
The synthetic data which covers more than 50k tasks can then be used to finetune a smaller model.
However, the original implementation is less accessible due to licensing constraints of the
underlying [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) model.
Furthermore, users have noted [potential noise](https://github.com/tloen/alpaca-lora/issues/65) in the synthetic
dataset. Hence, it may be better to explore a fully accessible model that is already trained on high-quality (but
less diverse) instructions such as [Flan-T5](https://arxiv.org/abs/2210.11416).
### Usage
This uses Huggingface PEFT library for Parameter Efficient Fine Tuning
```
import torch
from peft import PeftModel
from transformers import GenerationConfig
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
BASE_MODEL = "google/flan-t5-xl"
LORA_WEIGHTS = "declare-lab/flan-alpaca-xl-lora"
TEMPERATURE = 1.0
TOP_P = 0.75
TOP_K = 40
NUM_BEAMS = 4
MAX_NEW_TOKENS = 128
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
if device == "cuda":
model = AutoModelForSeq2SeqLM.from_pretrained(
BASE_MODEL,
device_map="auto",
)
model = PeftModel.from_pretrained(model, LORA_WEIGHTS, force_download=True)
else:
model = AutoModelForSeq2SeqLM.from_pretrained(
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
LORA_WEIGHTS,
device_map={"": device},
)
prompt = "Write a short email to show that 42 is the optimal seed for training neural networks"
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
input_ids = input_ids.to(device)
generation_config = GenerationConfig(
temperature=TEMPERATURE,
top_p=TOP_P,
top_k=TOP_K,
num_beams=NUM_BEAMS,
)
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=MAX_NEW_TOKENS,
)
print(tokenizer.batch_decode(generation_output.sequences)[0])
```