dchen0/font-classifier

Merged DINOv2‑base checkpoint with LoRA weights for font classification.

This model is a fine-tuned version of facebook/dinov2-base-imagenet1k-1-layer on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2637
  • Model Preparation Time: 0.0016
  • Accuracy: 0.9163

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Accuracy
0.7099 0.0182 50 0.6595 0.0016 0.7594
0.7084 0.0363 100 0.6175 0.0016 0.7806
0.7638 0.0545 150 0.7014 0.0016 0.7337
0.6451 0.0727 200 0.6177 0.0016 0.7757
0.6852 0.0908 250 0.5691 0.0016 0.7971
0.5753 0.1090 300 0.5666 0.0016 0.8048
0.5925 0.1272 350 0.5235 0.0016 0.8204
0.6969 0.1453 400 0.5725 0.0016 0.7922
0.6096 0.1635 450 0.5103 0.0016 0.8173
0.5994 0.1817 500 0.5075 0.0016 0.8183
0.5272 0.1999 550 0.5116 0.0016 0.8229
0.5193 0.2180 600 0.4952 0.0016 0.8244
0.5689 0.2362 650 0.4662 0.0016 0.8388
0.5126 0.2544 700 0.4651 0.0016 0.8327
0.5301 0.2725 750 0.5080 0.0016 0.8158
0.5424 0.2907 800 0.4573 0.0016 0.8357
0.4357 0.3089 850 0.4412 0.0016 0.8486
0.5522 0.3270 900 0.4755 0.0016 0.8256
0.5639 0.3452 950 0.4463 0.0016 0.8339
0.4522 0.3634 1000 0.4347 0.0016 0.8458
0.5548 0.3815 1050 0.4112 0.0016 0.8560
0.4815 0.3997 1100 0.4300 0.0016 0.8514
0.5028 0.4179 1150 0.3840 0.0016 0.8713
0.4417 0.4360 1200 0.4364 0.0016 0.8462
0.4465 0.4542 1250 0.3731 0.0016 0.8740
0.3935 0.4724 1300 0.3672 0.0016 0.8753
0.5306 0.4906 1350 0.4480 0.0016 0.8388
0.3991 0.5087 1400 0.3718 0.0016 0.8698
0.483 0.5269 1450 0.3916 0.0016 0.8652
0.4323 0.5451 1500 0.3948 0.0016 0.8648
0.3664 0.5632 1550 0.3400 0.0016 0.8796
0.4941 0.5814 1600 0.3531 0.0016 0.8765
0.4185 0.5996 1650 0.3481 0.0016 0.8820
0.4506 0.6177 1700 0.3332 0.0016 0.8866
0.4015 0.6359 1750 0.3468 0.0016 0.8768
0.3919 0.6541 1800 0.3421 0.0016 0.8897
0.4281 0.6722 1850 0.3141 0.0016 0.8937
0.3659 0.6904 1900 0.3424 0.0016 0.8823
0.345 0.7086 1950 0.3172 0.0016 0.8912
0.3157 0.7267 2000 0.3226 0.0016 0.8903
0.3456 0.7449 2050 0.3178 0.0016 0.8909
0.3643 0.7631 2100 0.2988 0.0016 0.8983
0.4043 0.7812 2150 0.3036 0.0016 0.8992
0.3486 0.7994 2200 0.2974 0.0016 0.9053
0.3735 0.8176 2250 0.3026 0.0016 0.8964
0.4032 0.8358 2300 0.2990 0.0016 0.9019
0.3825 0.8539 2350 0.2938 0.0016 0.9062
0.345 0.8721 2400 0.2871 0.0016 0.9059
0.3528 0.8903 2450 0.2777 0.0016 0.9093
0.3207 0.9084 2500 0.2764 0.0016 0.9111
0.2664 0.9266 2550 0.2741 0.0016 0.9099
0.3496 0.9448 2600 0.2720 0.0016 0.9151
0.3274 0.9629 2650 0.2724 0.0016 0.9136
0.3014 0.9811 2700 0.2659 0.0016 0.9136
0.3235 0.9993 2750 0.2637 0.0016 0.9163

Framework versions

  • PEFT 0.15.2
  • Transformers 4.52.4
  • Pytorch 2.7.1
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
93
Safetensors
Model size
86.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support