ner_results / README.md
datmieu2k4's picture
Training complete
b0c9680 verified
metadata
library_name: transformers
license: mit
base_model: roberta-base
tags:
  - bert-ner-address-2
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: ner_results
    results: []

ner_results

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0004
  • Precision: 0.9999
  • Recall: 0.9999
  • F1: 0.9999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.0003 1.0 35645 0.0010 0.9997 0.9998 0.9997
0.0 2.0 71290 0.0008 0.9998 0.9998 0.9998
0.0 3.0 106935 0.0003 0.9999 0.9999 0.9999

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3