ner-results-1

This model is a fine-tuned version of datmieu2k4/ner_results on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0644
  • Precision: 0.9699
  • Recall: 0.9764
  • F1: 0.9731

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.0673 1.0 35645 0.0756 0.9629 0.9714 0.9671
0.0835 2.0 71290 0.0698 0.9670 0.9754 0.9712
0.0569 3.0 106935 0.0640 0.9696 0.9762 0.9729

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
11
Safetensors
Model size
124M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for datmieu2k4/ner-results-1

Finetuned
(1)
this model