metadata
dataset_info:
features:
- name: year
dtype: string
- name: id
dtype: string
- name: problem
dtype: string
- name: solution
dtype: string
- name: answer_type
dtype: string
- name: source
dtype: string
- name: type
dtype: string
- name: original_problem
dtype: string
- name: original_solution
dtype: string
- name: variation
dtype: int64
splits:
- name: train
num_bytes: 420734.1954022989
num_examples: 150
- name: validation
num_bytes: 420734.1954022989
num_examples: 150
- name: test
num_bytes: 622686.6091954022
num_examples: 222
download_size: 822829
dataset_size: 1464155
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
Putnam-AXIOM Splits for ZIP-FIT
This repository contains the train, validation, and test splits of the Putnam-AXIOM dataset specifically for use with the ZIP-FIT methodology research. The dataset is split as follows:
- train: 150 examples
- validation: 150 examples
- test: 222 examples
These splits are derived from the original 522 Putnam problems found in the main Putnam-AXIOM repository.
Main Repository
The full dataset with original problems and variations is available in the main repository: Putnam-AXIOM/putnam-axiom-dataset-ICML-2025-522
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("zipfit/Putnam-AXIOM-for-zip-fit-splits")
# Access each split
train_data = dataset["train"]
validation_data = dataset["validation"]
test_data = dataset["test"]
Citation
If you use this dataset, please cite it as follows:
@article{putnam_axiom2025,
title={Putnam-AXIOM: A Functional and Static Benchmark for Measuring Higher Level Mathematical Reasoning},
author={Aryan Gulati and Brando Miranda and Eric Chen and Emily Xia and Kai Fronsdal and Bruno de Moraes Dumont and Sanmi Koyejo},
journal={39th International Conference on Machine Learning (ICML 2025)},
year={2025},
note={Preprint available at: https://openreview.net/pdf?id=YXnwlZe0yf, ICML paper: https://openreview.net/forum?id=kqj2Cn3Sxr}
}
@article{miranda2024zipfit,
title={ZIP-FIT: Embedding-Free Data Selection via Compression-Based Alignment},
year = {2024},
journal = {arXiv preprint arXiv:2410.18194},
}
ZIP-FIT Project
For more information on the ZIP-FIT framework, including code and documentation, visit the ZIP-FIT GitHub repository.
License
This dataset is licensed under the Apache 2.0.