zakerytclarke commited on
Commit
0635971
·
verified ·
1 Parent(s): 225e55b

Create generate.py

Browse files
Files changed (1) hide show
  1. generate.py +43 -0
generate.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from datasets import load_dataset
3
+
4
+ # Load the SQuAD dataset
5
+ squad_dataset = load_dataset("squad")
6
+
7
+ # Convert the 'train' and 'validation' splits to pandas DataFrames
8
+ train_df = pd.DataFrame(squad_dataset['train'])
9
+ validation_df = pd.DataFrame(squad_dataset['validation'])
10
+
11
+
12
+ import re
13
+ import pandas as pd
14
+
15
+ df = pd.concat([train_df, validation_df], ignore_index=True)
16
+
17
+
18
+ def get_closest_sentence_section(text, provided_index):
19
+ # Regular expression to match any punctuation that ends a sentence
20
+ sentence_end_punctuation = r'[.!?]'
21
+
22
+ # Find all occurrences of sentence-ending punctuation and their indices
23
+ punctuation_indices = [match.start() for match in re.finditer(sentence_end_punctuation, text)]
24
+
25
+ # Add the start and end of the string as virtual punctuation indices
26
+ punctuation_indices = [-1] + punctuation_indices + [len(text)]
27
+
28
+ # Find the closest punctuation index above (<= provided_index)
29
+ closest_above = max([idx for idx in punctuation_indices if idx < provided_index], default=0)
30
+
31
+ # Find the closest punctuation index below (> provided_index)
32
+ closest_below = min([idx for idx in punctuation_indices if idx > provided_index], default=len(text))
33
+
34
+ # Trim the string based on closest punctuation above and below
35
+ trimmed_text = text[closest_above + 1: closest_below + 1].strip()
36
+
37
+ return trimmed_text
38
+
39
+ # Trim the context to only the relevant sentence
40
+ df['context'] = df.apply(lambda row: get_closest_sentence_section(row.context, row.answers.get('answer_start')[0]) , axis=1)
41
+ df['answer'] = df.apply(lambda row: row.answers.get('text')[0] , axis=1)
42
+
43
+ df[['title','context','question','answer']].to_parquet('tinysquad.parquet')