File size: 7,302 Bytes
dc61339 dffa9b9 cd9ae06 dffa9b9 dc61339 c45a49c dc61339 dffa9b9 dc61339 dffa9b9 dc61339 dffa9b9 dc61339 7370f33 dc61339 dffa9b9 dc61339 dffa9b9 dc61339 dffa9b9 e3304a2 7370f33 dc61339 e3304a2 dc61339 7370f33 dc61339 e3304a2 dc61339 7370f33 dc61339 7370f33 dc61339 dffa9b9 dc61339 4491123 dc61339 7370f33 4491123 dc61339 7370f33 4491123 7370f33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# -*- coding: utf-8 -*-
"""
@Project : indexing
@File : SciGraph
@Email : [email protected]
@Author : Yan Yuchen
@Time : 2023/3/9 12:53
"""
import json
import datasets
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
_CITATION = """\
@InProceedings{yan-EtAl:2022:Poster,
author = {Yuchen Yan and Chong Chen},
title = {SciGraph: A Knowledge Graph Constructed by Function and Topic Annotation of Scientific Papers},
booktitle = {3rd Workshop on Extraction and Evaluation of Knowledge Entities from Scientific Documents (EEKE2022), June 20-24, 2022, Cologne, Germany and Online},
month = {June},
year = {2022},
address = {Beijing, China},
url = {https://ceur-ws.org/Vol-3210/paper16.pdf}
}
"""
_DESCRIPTION = """\
"""
_HOMEPAGE = ""
# The license information was obtained from https://github.com/boudinfl/ake-datasets as the dataset shared over here is taken from here
_LICENSE = ""
_URLS = {
'classes': 'class.json',
'function': 'assign.json',
'topic': 'paper_new.json'
}
# TODO: Add link to the official dataset URLs here
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class SciGraph(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("0.0.1")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="function", version=VERSION,
description="This part of my dataset covers extraction"),
datasets.BuilderConfig(name="topic", version=VERSION,
description="This part of my dataset covers generation")
]
DEFAULT_CONFIG_NAME = "function"
def _info(self):
classes = ['综述与进展', '论证与对比', '思考与探讨', '原理与计算', '技术与方法', '设计与应用']
if self.config.name == "function": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"id": datasets.Value("string"),
"abstract": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=classes, num_classes=len(classes))
}
)
else:
features = datasets.Features(
{
"id": datasets.Value("string"),
"abstract": datasets.Value("string"),
"keywords": datasets.features.Sequence(datasets.Value("string"))
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"split": "train",
"classes": data_dir['classes'],
"function": data_dir['function'],
"topic": data_dir['topic']
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"split": "test",
"classes": data_dir['classes'],
"function": data_dir['function'],
"topic": data_dir['topic']
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"split": "valid",
"classes": data_dir['classes'],
"function": data_dir['function'],
"topic": data_dir['topic']
},
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, split, classes, function, topic):
if self.config.name == 'function':
with open(classes, 'r') as f:
functions = list(json.load(f).keys())
data = pd.read_json(function)
data = data.loc[data[functions].sum(axis=1) == 1]
data['label'] = [functions[row.tolist().index(1)] for index, row in data[functions].iterrows()]
data = data[['_id', 'abstract', 'label']]
train_data, valid_data = train_test_split(data, test_size=0.1, random_state=42)
test_data = pd.read_json(function)
test_data = test_data.loc[test_data[functions].sum(axis=1) == 0]
if split == 'train':
for idx, row in train_data.iterrows():
yield idx, {
"id": row._id,
"abstract": row.abstract,
"label": row.label
}
elif split == 'valid':
for idx, row in valid_data.iterrows():
yield idx, {
"id": row._id,
"abstract": row.abstract,
"label": row.label
}
elif split == 'test':
for idx, row in test_data.iterrows():
yield idx, {
"id": row._id,
"abstract": row.abstract,
"label": -1
}
if self.config.name == 'topic':
data = pd.read_json(topic)
data = data.replace(to_replace=r'^\s*$', value=np.nan, regex=True).dropna(subset=['keywords'], axis=0)
train_data, valid_data = train_test_split(data, test_size=0.1, random_state=42)
test_data = pd.read_json(topic)
if split == 'train':
for idx, row in train_data.iterrows():
yield idx, {
"id": row._id,
"abstract": row.abstract,
"keywords": row.keywords.split('#%#')
}
elif split == 'valid':
for idx, row in valid_data.iterrows():
yield idx, {
"id": row._id,
"abstract": row.abstract,
"keywords": row.keywords.split('#%#')
}
elif split == 'test':
for idx, row in test_data.iterrows():
yield idx, {
"id": row._id,
"abstract": row.abstract,
"keywords": row.keywords.split('#%#')
}
|